Zusammenfassung
An assumption-free automatic check of medical images for potentially overseen anomalies would be a valuable assistance for a radiologist. Deep learning and especially Variational Auto-Encoders (VAEs) have shown great potential in the unsupervised learning of data distributions. In principle, this allows for such a check and even the localization of parts in the image that are most suspicious.
Chapter PDF
Similar content being viewed by others
Literatur
Zimmerer D, Isensee F, Petersen J, et al.; Springer. Unsupervised anomaly localization using variational auto-encoders. Proc MICCAI. 2019;.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K. (2020). Abstract: Unsupervised Anomaly Localization Using Variational Auto-Encoders. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_43
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)