[go: up one dir, main page]

Skip to main content

A Fuzzy Linear Programming Approach for Aggregate Production Planning

  • Chapter
  • First Online:
Supply Chain Management Under Fuzziness

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 313))

Abstract

Aggregate Production Planning (APP) is considered as an important stage in production systems, since it links operations with strategies and plays a key role in enterprise resource planning and organizational integration. An effective APP should not only provide the minimization of production and inventory costs, but also increase the level of service available to the customers. When maintaining APP, some of cost and demand parameters cannot be frequently determined as crisp values. Fuzzy logic is utilized in many engineering applications so as to handle imprecise data. This chapter provides a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different α-cut values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Guillermo G.: Aggregate production planning, IEOR 4000: Production Management Lecture Notes. http://www.columbia.edu/~gmg2/4000/pdf/lect_05.pdf. Accessed 2 Jan 2013

  • Aliev, R.A., Fazlollahi, B., Guirimov, B.G., Aliev, R.R.: Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Inf. Sci. 177, 4241–4255 (2007)

    Article  MATH  Google Scholar 

  • Allahviranloo, M., Afandizadeh, S.: Investment optimization on port’s development by fuzzy integer programming. Eur. J. Oper. Res. 186, 423–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Baykasoglu, A., Gocken, T.: Multi-objective aggregate production planning with fuzzy parameters. Adv. Eng. Softw. 41(12), 1124–1131 (2010)

    Article  MATH  Google Scholar 

  • Buckley, J.J.: Solving possibilistic linear programming. Fuzzy Sets Syst. 31(3), 329–341 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Chanas, S.: The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst. 11(1–3), 229–241 (1983)

    Article  Google Scholar 

  • Chen, S.P., Huang, W.L.: A membership function approach for aggregate production planning problems in fuzzy environments. Int. J. Prod. Res. 48(23), 7003–7023 (2010)

    Article  MATH  Google Scholar 

  • Figueroa-García, J.C., Kalenatic, D., Lopez-Bello, C.A.: Multi-period mixed production planning with uncertain demands: fuzzy and interval fuzzy sets approach. Fuzzy Sets Syst. 206, 21–38 (2012)

    Article  MATH  Google Scholar 

  • Fung, Y.K., Tang, J., Wang, D.: Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(3), 302–313 (2003)

    Article  Google Scholar 

  • Hsu, H.M., Wang, W.M.: Possibilistic programming in production planning of assemble-to-order environments. Fuzzy Sets Syst. 119, 59–70 (2001)

    Article  MathSciNet  Google Scholar 

  • Iris, C., Yenisey, M.M.: Multi-item simultaneous lot sizing and storage allocation with production and warehouse capacities. Computational Logistics,vol. 7555, pp. 129–141. Springer, Heidelberg (2012)

    Google Scholar 

  • Jamalnia, A., Soukhakian, M.A.: A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Comput. Ind. Eng. 56, 1474–1486 (2009)

    Article  Google Scholar 

  • Julien, B.: An extension to possibilistic linear programming. Fuzzy Sets Syst. 64(2), 195–206 (1994)

    Article  MathSciNet  Google Scholar 

  • Lan, Y.F., Liu, Y.K., Sun, G.J.: Modeling fuzzy multi-period production planning and sourcing problem with credibility service levels. J. Comput. Appl. Math. 231, 208–221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Liang, T.F.: Application of interactive possibilistic linear programming to aggregate production planning with multiple imprecise objectives. Prod. Plan. Control 18(7), 548–560 (2007)

    Article  Google Scholar 

  • Liang, T.F., Cheng, H.W., Chen, P.Y., Shen, K.H.: Application of fuzzy sets to aggregate production planning with multiproducts and multitime periods. IEEE Trans. Fuzzy Syst. 19(3), 465–477 (2011)

    Article  Google Scholar 

  • Mezghani, M., Loukil, T., Aouni, B.: Aggregate planning through the imprecise goal programming model: integration of the manager’s preferences. Int. Trans. Oper. Res. 19, 581–597 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Miller, W.A., Leungb, L.C., Azhar, T.M., Sargent, S.: Fuzzy production planning model for fresh tomato packing. Int. J. Prod. Econ. 53(1), 227–238 (1997)

    Article  Google Scholar 

  • Mula, J., Poler, R., Garcia, J.P.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157(2), 74–97 (2006a)

    Article  MATH  MathSciNet  Google Scholar 

  • Mula, J., Poler, R., Garcia, J.P.: Material requirement planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets Syst. 158, 783–793 (2006b)

    Article  MathSciNet  Google Scholar 

  • Omar, M.K., Jusoh, M.M., Omar, M.: Investigating the benefits of fuzzy mathematical programming approach for solving aggregate production plannings. IEEE World Congress on Computational Intelligence, WCCI, pp. 1–6 (2012)

    Google Scholar 

  • Peidro, D., Mula, J., Alemany, M.M.E., Lario, F.C.: Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. Int. J. Prod. Res. 50(11), 3011–3020 (2012)

    Article  Google Scholar 

  • Pendharkart, P.C.: A fuzzy linear programming model for production planning in coal mines. Comput. Oper. Res. 24(12), 1141–1149 (1997)

    Article  Google Scholar 

  • Reveliotis, S.: Introduction to supply chain modeling. Manufacturing & Warehousing Lecture Notes. http://www2.isye.gatech.edu/~spyros/courses/IE3102/course_materials.html. Accessed 2 Jan 2013

  • Sakallı, U.M., Baykoç, O.F., Birgören, B.: Possibilistic aggregate production planning model for brass casting industry. Prod. Plan. Control Manag. Oper. 21(3), 319–338 (2010)

    Article  Google Scholar 

  • Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E 44, 396–419 (2008)

    Article  Google Scholar 

  • Shih, L.H.: Cement transportation planning via fuzzy linear programming. Int. J. Prod. Econ. 58(3), 277–287 (1999)

    Article  Google Scholar 

  • Taghizadeh, K., Bagherpour, M., Mahdavi, I.: Application of fuzzy multi-objective linear programming model in a multi-period multi-product production planning problem. Int. J. Comput. Intell. Syst. 4(2), 228–243 (2011)

    Google Scholar 

  • Tang, J., Fung, R.Y.K., Yung, K.L.: Fuzzy modelling and simulation for aggregate production planning. Int. J. Syst. Sci. 34(12–13), 661–673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Techawiboonwong, A., Yenradee, P.: Aggregate production planning with workforce transferring plan for multiple product types. Prod. Plan. Control 14, 447–458 (2003)

    Article  Google Scholar 

  • Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159, 193–214 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Torabi, S.A., Hassini, E.: Multi-site production planning integrating procurement and distribution plans in multi-echelon supply chains: an interactive fuzzy goal programming approach. Int. J. Prod. Res. 47(19), 5475–5499 (2009)

    Article  MATH  Google Scholar 

  • Torabi, S.A., Ebadian, M., Tanha, R.: Fuzzy hierarchical production planning (with a case study). Fuzzy Sets Syst. 161, 1511–1529 (2010)

    Google Scholar 

  • Wang, R.C., Liang, T.F.: Applying possibilistic linear programming to aggregate production planning. Int. J. Prod. Econ. 98, 328–341 (2005a)

    Article  Google Scholar 

  • Wang, R.C., Liang, T.F.: Aggregate production planning with multiple fuzzy goals. Int. J. Adv. Manuf. Technol. 25(6), 589–597 (2005b)

    Article  MATH  Google Scholar 

  • Yaghin, R.G., Torabi, S.A., Ghomi, S.M.T.: Integrated markdown pricing and aggregate production planning in a two echelon supply chain: a hybrid fuzzy multiple objective approach. Appl. Math. Model. 36, 6011–6030 (2012)

    Article  MathSciNet  Google Scholar 

  • Yuan, G.Q., Liu, Y.K.: Two-Stage Fuzzy Optimization of an Mpmp Production Planning Model. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, pp. 1685–1690 (2006)

    Google Scholar 

  • Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–56 (1978)

    Article  MATH  Google Scholar 

  • Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Netherlands (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Cevikcan .

Editor information

Editors and Affiliations

Appendix: LINGO code of given Aggregate Production Planning Model

Appendix: LINGO code of given Aggregate Production Planning Model

  • MODEL:

    • SETS:

    • months/1..6/:P,W,O,H,F,I,B,WD,D,pc,hc,oc,fc,ic,bc;

    • ENDSETS

  • min = @sum(months(t):pc(t)*P(t) + 8*WD(t)*W(t)*6 + oc(t)*O(t) + hc(t)*H(t) + fc(t)*F(t) + ic(t)*I(t) + bc(t)*B(t));

    • @for(months(t)| t#GT#1: P(t) + I(t − 1) + B(t) − I(t) − B(t − 1) = D(t););

    • P(1) + I0 + B(1) − I(1) − B0 = D(1);

    • @for(months(t)| t#GT#1: W(t) − W(t − 1) − H(t) + F(t) = 0;);

    • W(1) − W0 − H(1) + F(1) = 0;

    • @for(months(t): 90*P(t) − 8*WD(t)*W(t) − O(t) < 0;);

    • @for(months(t):O(t) <= 0.25*W(t)*WD(t)*8;);

    • B(6) = 0;

    • @for(months(t): @GIN(H));

    • @for(months(t): @GIN(F));

    • @for(months(t): @GIN(W));

    • @for(months(t): @GIN(P));

    • DATA:

    • D = 100,100,150,200,150,100;

    • WD = 15,15,18,18,15,15;

    • pc = 7, 8, 8, 8, 7, 8;

    • oc = 22.5,22.5,27,27,22.5,22.5;

    • hc = 1000,1000,1000,1000,1000,1000;

    • fc = 1500,750,1250,1000,1500,950;

    • ic = 3, 4, 4, 4, 3, 2;

    • bc = 20,25,25,25,20,15;

    • I0 = 3;

    • B0 = 0;

    • W0 = 0;

    • ENDDATA

  • END

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iris, C., Cevikcan, E. (2014). A Fuzzy Linear Programming Approach for Aggregate Production Planning. In: Kahraman, C., Öztayşi, B. (eds) Supply Chain Management Under Fuzziness. Studies in Fuzziness and Soft Computing, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53939-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53939-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53938-1

  • Online ISBN: 978-3-642-53939-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics