[go: up one dir, main page]

Skip to main content

Self-Organizing Neural Networks for Visualisation and Classification

  • Conference paper
Information and Classification

Part of the book series: Studies in Classification, Data Analysis and Knowledge Organization ((STUDIES CLASS))

  • 730 Accesses

Abstract

This paper presents the usage of an artificial neural network, Kohonen’s self organizing feature map, for visualisation and classification of high dimensional data. Through a learning process, this neural network creates a mapping from a N-dimensional space to a two-dimensional plane of units (neurons). This mapping is known to preserve topological relations of the N-dimensional space. A specially developed technique, called U-matrix method has been developed in order to detect nonlinearities in the resulting mapping. This method can be used to visualize structures of the N-dimensional space. Boundaries between different subsets of input data can be detectet. This allows to use this method for a clustering of the data. New data can be classified in an associative way. It has been demonstrated, that the method can be used also for knowledge acquisition and exploratory data analysis purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Grossberg, S. (1987), Competitive Learning: From Adaptive Activation to Adaptive Resonance, Cognitive Science, 17, 23–63.

    Article  Google Scholar 

  • Kohonen, T. (1982), Clustering, Taxonomy, and Topological Maps of Patterns, in: Lang, M. (Ed.), Proceedings of the Sixth International Conference on Pattern Recognition, Silver Spring, MD, IEEE Computer Society Press, 114–128.

    Google Scholar 

  • Ritter, H., Martinez, T., Schulten, K. (1990), Neuronale Netze, Addison Wesley.

    Google Scholar 

  • Rumelhart, D.E., McClelland, J.L. (1989), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Volume 1: Foundations, MIT Press, Cambridge.

    Google Scholar 

  • Ultsch, A. (1991), Konnektionistische Modelle und ihre Integration mit wissensbasierten Systemen, Habilitationsschrift, Univ. Dortmund.

    Google Scholar 

  • Ultsch, A. (1991a), The Integration of Neuronal Networks with Expert Systems, Proceedings Workshop on Industrial Applications of Neural Networks, Ascona, Vol III, 3–7.

    Google Scholar 

  • Ultsch, A., Palm, G., RĂĽckert, U. (1991a), Wissensverarbeitung in neuronaler Architektur, in: Brauer, Hernandez (Eds.): Verteilte kĂĽnstliche Intelligenz und kooperatives Arbeiten, GI-Kongress, MĂĽnchen, 508–518.

    Google Scholar 

  • Ultsch, A., Hannuschka, R., Hartmann, U., Mandischer, M., Weber, V. (1991b), Optimizing Logical Proofs with Connectionist Networks, Proc. Intl. Conf. Artificial Neural Networks, Vol I, Helsinki, 585–590.

    Google Scholar 

  • Ultsch, A., Halmans,G., Mantyk, R. (1991c), A Connectionist Knowledge Acquisition Tool: Concat, Proc. International Workshop on Artificial Intelligence and Statistics, January 2–5, Ft. Lauderdale.

    Google Scholar 

  • Ultsch, A., Halmans, G. (1991), Data Normalization with Self-Organizing Feature Maps, Proc. Intl. Joint Conf. Neural Networks, Seattle, Vol I, 403–407.

    Google Scholar 

  • Ultsch, A., Halmans, G. (1991a), Neuronale Netze zur UnterstĂĽtzung der Umweltforschung, Symp. Computer Science for Environmental Protection, Munich.

    Google Scholar 

  • Ultsch, A., Panda, PG. (1991), Die Kopplung konnektionistischer Modelle mit wissensbasierten Systemen, Tagungsband Expertensystemtage, Dortmund, VDI Verlag, 74–94.

    Google Scholar 

  • Ultsch, A., Siemon, H.P. (1990), Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis, Proc. Intern. Neural Networks, Kluwer Academic Press, Paris, 305–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Ultsch, A. (1993). Self-Organizing Neural Networks for Visualisation and Classification. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50974-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56736-3

  • Online ISBN: 978-3-642-50974-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics