Abstract
This paper presents a multi-model framework for Visual Concept Detection and Annotation(VCDA) task based on Multiple Kernel Learning(MKL), To extract discriminative visual features and build visual kernels. Meanwhile the tags associated with images are used to build the textual kernels. Finally, in order to benefit from both visual models and textual models, fusion is carried out by MKL efficiently embed. Traditionally the term frequencies model is used to capture this useful textual information. However, the shortcoming in the term frequencies model lies in the fact that the performance seriously depends on the dictionary construction and in the fact that the valuable semantic information can not be captured. To solve this problem, we propose one textual feature construction approach based on WordNet distance. The advantages of this approach are three-fold: (1) It is robust, because our feature construction approach does not depend on dictionary construction. (2) It can capture tags semantic information which is hardly described by the term frequencies model. (3) It efficiently fuses visual models and textual models. The experimental results on the ImageCLEF 2011 show that our approach effectively improves the recognition accuracy.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Binder, A., Samek, W., Kloft, M., Müller, C., Müller, K.R., Kawanabe, M.: The joint submission of the tu berlin and fraunhofer first (tubfi) to the imageclef 2011 photo annotation task. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (2011)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., Bray, C.: Visual categorization with bags of keypoints. In: European Conference on Computer Vision (ECCV), pp. 1–22 (2004)
Daróczy, B., Pethes, R., Benczúr, A.A.: Sztaki @ imageclef 2011. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
Fellbaum, C. (ed.): WordNet: an electronic lexical database. MIT Press (1998)
Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: CVPR (June 2010)
Lin, Y.Y., Liu, T.L., Fuh, C.S.: Local ensemble kernel learning for object category recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Liu, N., Dellandréa, E., Tellez, B., Chen, L.: Associating textual features with visual ones to improve affective image classification. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 195–204. Springer, Heidelberg (2011)
Liu, N., Zhang, Y., Dellandréa, E., Bres, S., Chen, L.: Liris-imagine at imageclef 2011 photo annotation task. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004), http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points (2001), http://perception.inrialpes.fr/Publications/2001/MS01a
Nagel, K., Nowak, S., Kühhirt, U., Wolter, K.: The fraunhofer idmt at imageclef 2011 photo annotation task. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
van de Sande, K.E.A., Snoek, C.G.M.: The university of amsterdam’s concept detection system at imageclef 2011. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
Siddiquie, B., Vitaladevuni, S.N.P., Davis, L.S.: Combining multiple kernels for efficient image classification. In: WACV, pp. 1–8. IEEE Computer Society (2009)
Su, Y., Jurie, F.: Semantic contexts and fisher vectors for the imageclef 2011 photo annotation task. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
Vishwanathan, S.V.N., Sun, Z., Theera-Ampornpunt, N., Varma, M.: Multiple kernel learning and the SMO algorithm. In: Advances in Neural Information Processing Systems (December 2010)
Xioufis, E.S., Sechidis, K., Tsoumakas, G., Vlahavas, I.P.: Mlkd’s participation at the clef 2011 photo annotation and concept-based retrieval tasks. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)
Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing average precision. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 271–278. ACM, New York (2007)
Zhu, C., Bichot, C.E., Chen, L.: Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition. In: International Conference on Pattern Recognition (ICPR), pp. 3065–3068. IEEE (August 2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Bres, S., Chen, L. (2013). Visual Concept Detection and Annotation via Multiple Kernel Learning of Multiple Models. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41184-7_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-41184-7_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41183-0
Online ISBN: 978-3-642-41184-7
eBook Packages: Computer ScienceComputer Science (R0)