Abstract
In this paper we propose a novel framework for the detection and tracking in real-time of unknown object in a video stream. We decompose the problem into two separate modules: detection and learning. The detection module can use multiple keypoint-based methods (ORB, FREAK, BRISK, SIFT, SURF and more) inside a fallback model, to correctly localize the object frame by frame exploiting the strengths of each method. The learning module updates the object model, with a growing and pruning approach, to account for changes in its appearance and extracts negative samples to further improve the detector performance. To show the effectiveness of the proposed tracking-by-detection algorithm, we present quantitative results on a number of challenging sequences where the target object goes through changes of pose, scale and illumination.
Chapter PDF
Similar content being viewed by others
References
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2004)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary Robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)
Morel, J.-M., Yu, G.: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM J. Img. Sci. 2, 438–469 (2009)
Ortiz, R.: FREAK: Fast Retina Keypoint. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38 (2006)
Kloihofer, W., Kampel, M.: Interest Point Based Tracking. In: 2010 20th International Conference on Pattern Recognition, pp. 3549–3552 (2010)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. IEEE Trans. on Pattern Anal. Mach. Intell. 34, 1409–1422 (2012)
Babenko, B., Yang, M.-H., Belongie, S.: Robust Object Tracking with Online Multiple Instance Learning. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1619–1632 (2011)
Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vision 77, 125–141 (2008)
Hare, S., Saffari, A., Torr, P.H.S.: Efficient online structured output learning for keypoint-based object tracking. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1894–1901 (2012)
Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In: Proceedings of the 12th European Conference on CV, pp. 759–773 (2012)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking. Int. J. Comput. Vision 94, 335–360 (2011)
Khvedchenia, I.: A battle of three descriptors: SURF, FREAK and BRISK (2012), http://computer-vision-talks.com/
Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 81–88 (2011)
Yu, Q., Dinh, T.B., Medioni, G.G.: Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)
Avidan, S.: Ensemble Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29, 261–271 (2007)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST Parallel Robust Online Simple Tracking. In: 2010 IEEE Conference on CVPR, pp. 723–730 (2010)
Grabner, H., Bischof, H.: On-line Boosting and Vision. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Pernici, F.: FaceHugger: The ALIEN Tracker Applied to Faces. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 597–601. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maresca, M.E., Petrosino, A. (2013). MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41184-7_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-41184-7_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41183-0
Online ISBN: 978-3-642-41184-7
eBook Packages: Computer ScienceComputer Science (R0)