Abstract
In this paper we describe a solution to multi-target data association problem based on ℓ1-regularized sparse basis expansions. Assuming we have sufficient training samples per subject, our idea is to create a discriminative basis of observations that we can use to reconstruct and associate a new target. The use of ℓ1-regularized basis expansions allows our approach to exploit multiple instances of the target when performing data association rather than relying on an average representation of target appearance. Preliminary experimental results on the PETS dataset are encouraging and demonstrate that our approach is an accurate and efficient approach to multi-target data association.
Chapter PDF
Similar content being viewed by others
References
Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic-Press, Boston (1988)
Bar-Shalom, Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11(5), 451–460 (1975)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process., 1:1–1:10 (January 2008)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1820–1833 (2011)
Cox, I., Hingorani, S.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(2), 138–150 (1996)
Cox, I.J.: A review of statistical data association techniques for motion correspondence. International Journal of Computer Vision 10, 53–66 (1993)
Doucet, A., de Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 176–183. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)
Fortmann, T.E., Bar Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering 8(3), 807–812 (1983)
Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–692 (2010)
Ma, Z., Wan, J.: Survey of data association of moving objects tracking in video sensors network. In: 9th International Conference on Electronic Measurement Instruments, ICEMI 2009, pp. 4-250–4-254 (2009)
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: NIPS, pp. 1033–1040 (2008)
Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, pp. 1436–1443 (2009)
Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: 43rd IEEE Conference on Decision and Control, CDC 2004, vol. 1, pp. 735–742 (December 2004)
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 31(2) (February 2009)
Yang, B., Nevatia, R.: Online learned discriminative part-based appearance models for multi-human tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 484–498. Springer, Heidelberg (2012)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (December 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bagdanov, A.D., Del Bimbo, A., Di Fina, D., Karaman, S., Lisanti, G., Masi, I. (2013). Multi-target Data Association Using Sparse Reconstruction. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41184-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-41184-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41183-0
Online ISBN: 978-3-642-41184-7
eBook Packages: Computer ScienceComputer Science (R0)