[go: up one dir, main page]

Skip to main content

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces without Indexing

  • Conference paper
Similarity Search and Applications (SISAP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8199))

Included in the following conference series:

Abstract

Proximity queries consists in retrieving objects near a given query. To avoid a brute force scan over a large database, an index can be used. However, for some problems, indexes are mostly useless (their running times are worst than sequential scan).

On the other hand, researchers have tried massively parallel hardware (as GPGPU) in the quest of faster query times. The results have been modest because current algorithms are cumbersome, while GPGPU architectures favor simple kernels, have a clear memory hierarchy and need close to zero cross-talk between processing units. We have engineered very fast algorithms for proximity queries taking into account this principles, all of them are presented in this paper.

In our approach no index is built, the cross-talk between threads is eliminated, and the higher (faster) levels of memory hierarchy are consistently used. The absence of data structures allows to use all the available memory for the database, and furthermore makes possible to do stream processing on very large data collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer (2006)

    Google Scholar 

  2. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  4. Benjamin, B., Navarro, G.: Probabilistic proximity searching algorithms based on compact partitions. Discrete Algorithms 2(1), 115–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirk, D., Hwu, W.: Programming Massively Parallel Processors, A Hands on Approach. Elsevier, Morgan Kaufmann (2010)

    Google Scholar 

  6. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU Computing, pp. 879–899. IEEE (2008)

    Google Scholar 

  7. NVIDIA. Nvidia cuda compute unified device architecture, programming guide version 4.2. In: NVIDIA (2012)

    Google Scholar 

  8. Barrientos, R., Gomez, J., Tenllado, C., Prieto, M.: Heap based k-nearest neighbor search on gpus. In: XXI Jornadas de Paralelismo, pp. 559–566 (September 2010)

    Google Scholar 

  9. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In: CVPR Workshop on Computer Vision on GPU (CVGPU), Anchorage, Alaska, USA (June 2008)

    Google Scholar 

  10. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: k-nearest neighbor search: fast GPU-based implementations and application to high-dimensional feature matching. In: IEEE International Conference on Image Processing, Hong Kong (September 2010)

    Google Scholar 

  11. Kato, K., Hosino, T.: Solving k-nearest neighbor problem on multiple graphics processors. In: ACM (ed.) 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID, pp. 769–773 (2010)

    Google Scholar 

  12. Kuang, Q., Zhao, L.: A practical gpu based knn algorithm. In: International Symposium on Computer Science and Computational Technology (ISC-SCT), pp. 151–155 (2009)

    Google Scholar 

  13. Liang, S., Liu, Y., Wang, C., Jian, L.: Design and evaluation of a parallel k-nearest neighbor algorithm on CUDA-enabled GPU. In: IEEE 2nd Symposium on Web Society (SWS), p. 53 (2010)

    Google Scholar 

  14. Rozen, T., Boryczko, K., Alda, W.: Gpu bucket sort algorithm with applications to nearest-neighbour search. Journal of WSCG 16(1-3), 161–167 (2008)

    Google Scholar 

  15. Barrientos, R., Gomez, J., Tenllado, C., Prieto, M.: Query processing in metric spaces using gpus. In: XXII Jornadas de Paralelismo (2011)

    Google Scholar 

  16. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN Query Processing in Metric Spaces Using GPUs. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree construction on graphics hardware. In: ACM SIGGRAPH Asia, Papers, SIGGRAPH Asia 2008, pp. 126:1–126:11. ACM, New York (2008)

    Google Scholar 

  18. Brown, S., Snoeyink, J.: Gpu nearest neighbors using a minimal kd-tree. In: Second Workshop on Massive Data Algorithmics (MASSIVE 2010), Snowbird, Utah, USA (June 2010)

    Google Scholar 

  19. Qiu, D., May, S., Nüchter, A.: Gpu-accelerated nearest neighbor search for 3d registration. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 194–203. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Djinevski, S.R.L., Gusev, M.: Superlinear speedup for matrix multiplication in gpu devices. In: ICT Innovations 2012, pp. 285–294 (2013)

    Google Scholar 

  21. Navarro, G.: Searching in metric spaces by spatial approximation. The Very Large Databases Journal (VLDBJ) 11(1), 28–46 (2002)

    Article  Google Scholar 

  22. Chavez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with the distal sat (2012) (submitted, draft)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miranda, N., Chávez, E., Piccoli, M.F., Reyes, N. (2013). (Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces without Indexing. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics