Abstract
Variational Bayesian Approximation (VBA) methods are recent tools for effective full Bayesian computations. In this paper, these tools are used for linear inverse problems where the prior models include hidden variables (Hierarchical prior models) and where the estimation of the hyper parameters has also to be addressed. In particular one specific prior model (Student-t) is considered and used via a hierarchical representation with hidden variables and the details of the resulted VBA algorithms are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mohammad-Djafari, A., Demoment, G.: Tomographie de diffraction and synthèse de fourier à maximum d’entropie. Revue Phys. Appl. 22, 153–167 (1987)
Ayasso, H., Mohammad-Djafari, A.: Joint NDT image restoration and segmentation using Gauss–Markov–Potts prior models and variational bayesian computation. IEEE Transactions on Image Processing 19, 2265–2277 (2010)
Ayasso, H., Duchne, B., Mohammad-Djafari, A.: Bayesian inversion for optical diffraction tomography. Journal of Modern Optics. 57, 765–776 (2010)
Kullback, S.: Information theory and statistics. Wiley, New York (1959)
Akaike, H.: On entropy maximization principle. In: Applications of Statistics, pp. 27–41. North-Holland C (1977)
Jaynes, E.: On the rationale of maximum-entropy methods. Proceedings of the IEEE 70, 939–952 (1982)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. R. Statist. Soc. BÂ 39, 3 (1977)
Miller, M., Snyder, D.: The role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and toeplitz constrained covariances. Proceedings of the IEEE 75, 892–906 (1987)
Snoussi, H., Mohammad-Djafari, A.: Information geometry of prior selection. In: Williams, C. (ed.) Bayesian Inference and Maximum Entropy Methods, Univ. of Idaho, Moscow, Idaho, USA, MaxEnt Workshops. AIP Conference Proceedings, vol. 570 (2002)
Mohammad-Djafari, A.: Approche variationnelle pour le calcul bayésien dans les problèmes inverses en imagerie, 31 p. (2009), Arxive http://arxiv.org/abs/0904.4148
Beal, M.: Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Computational Neuroscience Unit, University College London (2003)
Likas, A.C., Galatsanos, N.P.: A variational approach for bayesian blind image deconvolution. IEEE Transactions on Signal Processing (2004)
Winn, J., Bishop, C.M., Jaakkola, T.: Variational message passing. Journal of Machine Learning Research 6, 661–694 (2005)
Chatzis, S., Varvarigou, T.: Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributionsclassification of binary random patterns. IEEE Trans. on Fuzzy Systems 17, 505–517 (2009)
Park, T., Casella, G.: The Bayesian Lasso. Journal of the American Statistical Association 103, 681–686 (2008)
Mohammad-Djafari, A.: A variational bayesian algorithm for inverse problem of computed tomography. In: Censor, Y., Jiang, M., Louis, A.K. (eds.) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT). Edizioni Della Normale (CRM Series), pp. 231–252 (2008)
Mohammad-Djafari, A., Ayasso, H.: Variational bayes and mean field approximations for markov field unsupervised estimation. In: IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2009, pp. 1–6. IEEE (2009)
Tipping, M.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)
He, L., Chen, H., Carin, L.: Tree-Structured Compressive Sensing With Variational Bayesian Analysis. IEEE Signal. Proc. Let. 17, 233–236 (2010)
Fraysse, A., Rodet, T.: A gradient-like variational Bayesian algorithm. In: SSP 2011, Nice, France, vol. S17(5), pp. 605–608 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohammad-Djafari, A. (2013). Variational Bayesian Approximation for Linear Inverse Problems with a Hierarchical Prior Models. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_74
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)