Abstract
This paper presents an efficient web service discovery approach using hierarchical agglomerative clustering (HAC). Services in a repository are clustered based on a dissimilarity measure from attached matchmaker. Service discovery is then performed over the resulting dendrogram (binary tree), which has time complexity of O(log n). In comparison with conventional approaches that mostly perform exhaustive search, service-clustering method brings a dramatic improvement on time complexity with an acceptable loss in precision.
Work partially supported by the Spanish Ministry of Science and Innovation through the projects OVAMAH (grant TIN2009-13839-C03-02; co-funded by Plan E) and "AT" (grant CSD2007-0022; CONSOLIDER-INGENIO 2010) and by the Spanish Ministry of Economy and Competitiveness through the project iHAS (grant TIN2012-36586-C03-02)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christensen, E., et al.: Web services description language (WSDL) 1.1 (2001)
Colomb, R.M.: Ontology and the Semantic Web. IOS Press (2007)
Elgazzar, K., et al.: Clustering wsdl documents to bootstrap the discovery of web services. In: Proceeding of IEEE International Conference on Web Service, ICWS 2010. IEEE (2010)
Everitt, B., et al.: Cluster Analysis Arnold. A member of the Hodder Headline Group, London (2001)
Feier, C. et al.: Towards intelligent web services: the web service modeling ontology (WSMO) (2005), http://oro.open.ac.uk/23147/1/10.1.1.94.1336[1].pdf
Fernandez, A., Cong, Z., Balta, A.: Bridging the Gap Between Service Description Models in Service Matchmaking. Multiagent and Grid Systems 8(1), 83–103 (2012)
Fernandez, A., Hayes, C., Loutas, N., Peristeras, V., Polleres, A., Tarabanis, K.A.: Closing the Service Discovery Gap by Collaborative Tagging and Clustering Techniques. In: Proceedings of Workshop on Service Discovery and Resource Retrieval in the Semantic Web, 7th International Semantic Web Conference, Karlsruhe, Germany (2008)
Fung, B.C.M., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of the SIAM International Conference on Data Mining, vol. 30(5), pp. 59–70 (2003)
Gerede, Ç.E., et al.: Automated composition of e-services: Lookaheads. In: Proceedings of the 2nd International Conference on Service Oriented Computing, pp. 252–262 (2004)
Hakimpour, S., et al.: Semantic web service composition in IRS-III: The structured approach. In: Seventh IEEE International Conference on ECommerce Technology, CEC 2005, pp. 484–487 (2005)
Kiefer, C., Bernstein, A.: The creation and evaluation of iSPARQL strategies for matchmaking. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 463–477. Springer, Heidelberg (2008)
Klusch, M., et al.: Automated semantic web service discovery with OWLS-MX. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 915–922 (2006)
Klusch, M., Fries, B.: Hybrid OWL-S service retrieval with OWLS-MX: Benefits and pitfalls. Service Matchmaking and Resource Retrieval in the Semantic Web 47
Klusch, M., Kapahnke, P.: iSeM: Approximated reasoning for adaptive hybrid selection of semantic services. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 30–44. Springer, Heidelberg (2010)
Kopecky, J., et al.: SAWSDL: Semantic annotations for wsdl and xml schema. IEEE Internet Computing, 60–67 (2007)
Kopecky, J., Vitvar, T.: WSMO-Lite: Lowering the Semantic Web Services Barrier with Modular and Light-weight Annotations. In: 2nd IEEE International Conference on Semantic Computing (ICSC), Santa Clara, CA, USA (2008)
Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–22. ACM (1999)
Liu, W., Wong, W.: Web service clustering using text mining techniques. International Journal of Agent-Oriented Software Engineering 3(1) (2009)
Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., et al.: Bringing semantics to web services: The OWL-S approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)
Medjahed, B.: Semantic web enabled composition of web services. PhD diss., Virginia Polytechnic Institute and State University (2004)
Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)
NAICS: NAICS Code searching (2004)
Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)
Peer, J.: Towards automatic web service composition using ai planning techniques. In: AI Planning Techniques (2003), http://sws.mcm.unisg.ch/docs/wsplanning.pdf-504083 Deliverable 3.1
Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning (2003)
Slonim, N., Tishby, N.: Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 208–215. ACM (2000)
Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining, vol. 400, pp. 525–526 (2000)
Wu, D., Sirin, E., Hendler, J., Nau, D., Parsia, B.: Automatic web services composition using shop2. Maryland Univ. College Park Dept. of Computer Science (2006)
Zhao, Y., Karypis, G., Fayyad, U.: Hierarchical Clustering Algorithms for Document Datasets. Data Min. Knowl. Discov. 10(2), 141–168 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cong, Z., Fernández Gil, A. (2013). Efficient Web Service Discovery Using Hierarchical Clustering. In: Chesñevar, C.I., Onaindia, E., Ossowski, S., Vouros, G. (eds) Agreement Technologies. Lecture Notes in Computer Science(), vol 8068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39860-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-39860-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39859-9
Online ISBN: 978-3-642-39860-5
eBook Packages: Computer ScienceComputer Science (R0)