[go: up one dir, main page]

Skip to main content

Bayes Theorem, Uninorms and Aggregating Expert Opinions

  • Conference paper
Aggregation Functions in Theory and in Practise

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 228))

Abstract

In the introduction we examine Dombi aggregative operators, uninorms, strict t-norms and t-conorms.We give a certain class of weighted aggregative operators (weighted representable uninorms). After, we focus on a specific form of the aggregative operator. Using Dombi’s generator function, we show that this form is the same as that for the aggregation of expert probability values, and we can get this operator via Bayes’ theorem. These two theorems shed new light on the class of aggregative operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on functional equations and their applications. Academic Press, New York (1966)

    MATH  Google Scholar 

  2. Bordley, R.F.: A multiplicative formula for aggregating probability assessments. Management Science 28, 1137–1148 (1982)

    Article  MATH  Google Scholar 

  3. Calvo, T., Baets, B.D., Fodor, J.: The functional equations of frank and alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120, 385–394 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. European Journal of Operations Research 10, 282–293 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(4), 411–427 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hu, S.-K., Li, Z.-F.: The structure of continuous uni-norms. Fuzzy Sets and Systems 124, 43–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Genest, C., Zidek, J.V.: Combining Probability Distributions: A Critique and an Annotated Bibliography. Statistical Science 1(1), 114–135 (1986)

    Article  MathSciNet  Google Scholar 

  8. Gilardoni, G.L.: On irrevelance of alternatives and opinion pooling. Brazilian Journal of Probability and Statistics 16, 87–98

    Google Scholar 

  9. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer (2000)

    Google Scholar 

  10. Klement, E.P., Mesiar, R., Pap, E.: On the relationship of associative compensatory operators to triangular norms and conorms. Uncertainty, Fuzziness and Knowledge-Based Systems 4, 129–144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, Y.-M., Shi, Z.-K.: Weak uninorm aggregation operators. Information Sciences 124, 317–323 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, Y.M., Shi, Z.K.: Remarks on uninorms aggregation operators. Fuzzy Sets and Systems 114, 377–380 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, J., Mesiar, R., Struk, P.: Pseudo-optimal measures. Information Sciences 180(20), 4015–4021 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets and Systems 128, 209–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Monserrat, M., Torrens, J.: On the reversibility of uninorms and t-operators. Fuzzy Sets and Systems 131, 303–314 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yager, R.R.: Uninorms in fuzzy systems modeling. Fuzzy Sets and Systems 122, 167–175 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ramoni, M., Sebastiani, P.: Robust Bayes classifiers. Artificial Intelligence 125, 209–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frank, E., Trigg, L., Holmes, G., Witten, I.H.: Technical note: Naive Bayes for regression. Machine Learning 41, 5–25 (2000)

    Article  Google Scholar 

  20. Friedman, J.H.: On bias, variance, 0/1 loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1, 55–77 (1997)

    Article  Google Scholar 

  21. Friedman, J.H., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  22. Triangular Norms. Kluwer, Dordrecht (2000)

    Google Scholar 

  23. Ortiz, J.M., Deutsch, C.V.: Indicator simulationAccounting for Multiple-Point Statistics. Mathematical Geology 36(5), 545–565 (2004)

    Article  MATH  Google Scholar 

  24. Fodor, J., De Baets, B.: A single-point characterization of representable uninorms. Fuzzy Sets and Systems 202, 89–99 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jenei, S., Montagna, F.: Strongly involutive uninorm algebras. Journal of Logic and Computation (2012), doi:10.1093/logcom/exs019

    Google Scholar 

  26. Jenei, S.: Structural description of a class of involutive uninorms via skew symmetrization. Journal of Logic and Computation 21(5), 729–737 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jenei, S., Montagna, F.: Classification of absorbent-continuous, sharp FL e algebras over weakly real chains (under review process)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Dombi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dombi, J. (2013). Bayes Theorem, Uninorms and Aggregating Expert Opinions. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds) Aggregation Functions in Theory and in Practise. Advances in Intelligent Systems and Computing, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39165-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39165-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39164-4

  • Online ISBN: 978-3-642-39165-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics