[go: up one dir, main page]

Skip to main content

DiffR-Tree: A Differentially Private Spatial Index for OLAP Query

  • Conference paper
Web-Age Information Management (WAIM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7923))

Included in the following conference series:

Abstract

Differential privacy has emerged as one of the most promising privacy models for releasing the results of statistical queries on sensitive data, with strong privacy guarantees. Existing works on differential privacy mostly focus on simple aggregations such as counts. This paper investigates the spatial OLAP queries, which combines GIS and OLAP queries at the same time. We employ a differentially private R-tree(DiffR-Tree) to help spatial OLAP queries. In our method, several steps need to be carefully designed to equip the spatial data warehouse structure with differential privacy requirements. Our experiments results demonstrate the efficiency of our spatial OLAP query index structure and the accuracy of answering queries.

This research was partially supported by the grants from the Natural Science Foundation of China (No. 61070055, 91024032, 91124001); the National 863 High-tech Program (No. 2012AA010701, 2013AA013204); the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University( No. 11XNL010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daratech: Geographic Information Systems Markets and Opportunities. Daratech, Inc. (2000)

    Google Scholar 

  2. Gómez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.: Spatial aggregation: Data model and implementation, CoRR abs/0707.4304 (2007)

    Google Scholar 

  3. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher (2001)

    Google Scholar 

  5. Rivest, S., Bédard, Y., Proulx, M.-J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP: Merging Business Intelligence with Geospatial Technology for Interactive Spatio-Temporal Exploration and Analysis of Data. Journal of International Society for Photogrammetry and Remote Sensing 60(1), 17–33 (2005)

    Article  Google Scholar 

  6. Han, J., Stefanovic, N., Koperski, K.: Selective materialization: An efficient method for spatial data cube construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 144–158. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Rao, F., Zang, L., Yu, X., Li, Y., Chen, Y.: Spatial hierarchy and OLAP-favored search in spatial data warehouse. In: Proceedings of DOLAP 2003, Louisiana, USA, pp. 48–55 (2003)

    Google Scholar 

  8. Zhang, L., Li, Y., Rao, F., Yu, X., Chen, Y.: An approach to enabling spatial OLAP by aggregating on spatial hierarchy. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 35–44. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Sweeney, L.: k-anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuziness and Knowledge-Based Systems, 557–570 (2002)

    Google Scholar 

  10. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery From Data, TKDD (2007)

    Google Scholar 

  11. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the Accuracy of Differentially Private Histograms through Consistency. Proceedings of the VLDB Endowment, 1021–1032 (2010)

    Google Scholar 

  12. Karwa, V., Raskhodnikova, S., Smith, A., Yaroslatsev, G.: Private analysis of graph structure. In: VLDB (2011)

    Google Scholar 

  13. Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: PODS (2010)

    Google Scholar 

  14. Xiao, X., Wang, G., Gehrke, J.: Differential Privacy via Wavelet Transforms. In: ICDE, pp. 225–236 (2010)

    Google Scholar 

  15. Xiao, X., Wang, G., Gehrke, J.: Differential Privacy via Wavelet Transforms. IEEE Transactions on Knowledge and Data Engineering, 1200–1214 (2011)

    Google Scholar 

  16. Cormode, G., Procopiuc, M., Shen, E., Srivastava, D., Yu, T.: Differentially Private Spatial Decompositions. In: ICDE (2012)

    Google Scholar 

  17. Friedman, A., Schuster, A.: Data Mining with Differential Privacy. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 493–502 (2010)

    Google Scholar 

  18. Bhaskar, R., Laxman, S., Smith, A., Thakurta, A.: Discovering Frequent Patterns in Sensitive Data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 503–512 (2010)

    Google Scholar 

  19. McSherry, F.: Privacy Integrated Queries: An Extensible Platform for Privacy-preserving Data Analysis. In: SIGMOD (2009)

    Google Scholar 

  20. Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.E.: Gupt: Privacy Preserving Data Analysis Made Easy. In: SIGMOD, Scottsdale, Arizona, USA, May 20-24 (2012)

    Google Scholar 

  21. Ding, B., Winslett, M., Han, J., Li, Z.: Differentially Private Data Cubes: Optimizing Noise Sources and Consistency. In: SIGMOD, Athens, Greece (2011)

    Google Scholar 

  22. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. McSherry, F., Talwar, K.: Mechanism Design via Differential Privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 94–103 (2007)

    Google Scholar 

  24. Location-based online social networks data in Stanford Large Network Dataset Collection, http://snap.stanford.edu/data/index.html#locnet

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, M., Zhang, X., Meng, X. (2013). DiffR-Tree: A Differentially Private Spatial Index for OLAP Query. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38562-9_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38561-2

  • Online ISBN: 978-3-642-38562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics