Abstract
Differential privacy has emerged as one of the most promising privacy models for releasing the results of statistical queries on sensitive data, with strong privacy guarantees. Existing works on differential privacy mostly focus on simple aggregations such as counts. This paper investigates the spatial OLAP queries, which combines GIS and OLAP queries at the same time. We employ a differentially private R-tree(DiffR-Tree) to help spatial OLAP queries. In our method, several steps need to be carefully designed to equip the spatial data warehouse structure with differential privacy requirements. Our experiments results demonstrate the efficiency of our spatial OLAP query index structure and the accuracy of answering queries.
This research was partially supported by the grants from the Natural Science Foundation of China (No. 61070055, 91024032, 91124001); the National 863 High-tech Program (No. 2012AA010701, 2013AA013204); the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University( No. 11XNL010).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Daratech: Geographic Information Systems Markets and Opportunities. Daratech, Inc. (2000)
Gómez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.: Spatial aggregation: Data model and implementation, CoRR abs/0707.4304 (2007)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher (2001)
Rivest, S., Bédard, Y., Proulx, M.-J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP: Merging Business Intelligence with Geospatial Technology for Interactive Spatio-Temporal Exploration and Analysis of Data. Journal of International Society for Photogrammetry and Remote Sensing 60(1), 17–33 (2005)
Han, J., Stefanovic, N., Koperski, K.: Selective materialization: An efficient method for spatial data cube construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 144–158. Springer, Heidelberg (1998)
Rao, F., Zang, L., Yu, X., Li, Y., Chen, Y.: Spatial hierarchy and OLAP-favored search in spatial data warehouse. In: Proceedings of DOLAP 2003, Louisiana, USA, pp. 48–55 (2003)
Zhang, L., Li, Y., Rao, F., Yu, X., Chen, Y.: An approach to enabling spatial OLAP by aggregating on spatial hierarchy. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 35–44. Springer, Heidelberg (2003)
Sweeney, L.: k-anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuziness and Knowledge-Based Systems, 557–570 (2002)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery From Data, TKDD (2007)
Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the Accuracy of Differentially Private Histograms through Consistency. Proceedings of the VLDB Endowment, 1021–1032 (2010)
Karwa, V., Raskhodnikova, S., Smith, A., Yaroslatsev, G.: Private analysis of graph structure. In: VLDB (2011)
Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: PODS (2010)
Xiao, X., Wang, G., Gehrke, J.: Differential Privacy via Wavelet Transforms. In: ICDE, pp. 225–236 (2010)
Xiao, X., Wang, G., Gehrke, J.: Differential Privacy via Wavelet Transforms. IEEE Transactions on Knowledge and Data Engineering, 1200–1214 (2011)
Cormode, G., Procopiuc, M., Shen, E., Srivastava, D., Yu, T.: Differentially Private Spatial Decompositions. In: ICDE (2012)
Friedman, A., Schuster, A.: Data Mining with Differential Privacy. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 493–502 (2010)
Bhaskar, R., Laxman, S., Smith, A., Thakurta, A.: Discovering Frequent Patterns in Sensitive Data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 503–512 (2010)
McSherry, F.: Privacy Integrated Queries: An Extensible Platform for Privacy-preserving Data Analysis. In: SIGMOD (2009)
Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.E.: Gupt: Privacy Preserving Data Analysis Made Easy. In: SIGMOD, Scottsdale, Arizona, USA, May 20-24 (2012)
Ding, B., Winslett, M., Han, J., Li, Z.: Differentially Private Data Cubes: Optimizing Noise Sources and Consistency. In: SIGMOD, Athens, Greece (2011)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
McSherry, F., Talwar, K.: Mechanism Design via Differential Privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 94–103 (2007)
Location-based online social networks data in Stanford Large Network Dataset Collection, http://snap.stanford.edu/data/index.html#locnet
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, M., Zhang, X., Meng, X. (2013). DiffR-Tree: A Differentially Private Spatial Index for OLAP Query. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-38562-9_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38561-2
Online ISBN: 978-3-642-38562-9
eBook Packages: Computer ScienceComputer Science (R0)