[go: up one dir, main page]

Skip to main content

An Optical Polynomial Time Solution for the Satisfiability Problem

  • Conference paper
Optical Supercomputing (OSC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7715))

Included in the following conference series:

Abstract

In this paper, we have used optics to solve the satisfiability problem. The satisfiability problem is a well-known NP-complete problem in computer science, having many real world applications, which no polynomial resources solution is found for it, yet. The provided method in this paper, is based on forming patterns on photographic films iteratively to solve a given satisfiability problem in efficient time. The provided method requires polynomial time, but, exponential length films and exponential amount of energy to solve the satisfiability problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)

    Google Scholar 

  2. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. The MIT Press (2008)

    Google Scholar 

  4. Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions, 1st edn. Springer (2007)

    Google Scholar 

  5. Paturi, R., Pudlak, P.: On the complexity of circuit satisfiability. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 241–250. ACM (2010)

    Google Scholar 

  6. Wen-Zhang, L., Jing-Fu, Z., Gui-Lu, L.: A parallel quantum algorithm for the satisfiability problem. Communication in Theoretical Physics 49(3), 629–630 (2008)

    Article  Google Scholar 

  7. Johnson, C.R.: Automating the DNA computer: Solving n-variable 3-SAT problems. Natural Computing 7(2), 239–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecilia, J.M., García, J.M., Guerrero, G.D., del Amor, M.A.M., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs. The Journal of Logic and Algebraic Programming 79(6), 317–325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goliaei, S., Jalili, S.: An optical wavelength-based solution to the 3-SAT problem. In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 77–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Goliaei, S., Jalili, S.: An optical solution to the 3-SAT problem using wavelength based selectors. International Journal of Supercomputing 62, 663–672 (2012)

    Article  Google Scholar 

  11. Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete problems, trading space for time. Theoretical Computer Science 411, 837–853 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oltean, M., Muntean, O.: An optical solution for the SAT problem. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 53–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Head, T.: Parallel computing by xeroxing on transparencies. In: Condon, A., et al. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 631–637. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Goliaei, S., Jalili, S., Salimi, J.: Light-based solution for the dominating set problem. Applied Optics 51(29), 6979–6983 (2012)

    Article  Google Scholar 

  15. Goliaei, S., Jalili, S.: Optical graph 3-colorability. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 16–22. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goliaei, S., Jalili, S. (2013). An Optical Polynomial Time Solution for the Satisfiability Problem. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2012. Lecture Notes in Computer Science, vol 7715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38250-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38250-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38249-9

  • Online ISBN: 978-3-642-38250-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics