[go: up one dir, main page]

Skip to main content

On Leveraging Crowdsourcing Techniques for Schema Matching Networks

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7826))

Included in the following conference series:

Abstract

As the number of publicly-available datasets are likely to grow, the demand of establishing the links between these datasets is also getting higher and higher. For creating such links we need to match their schemas. Moreover, for using these datasets in meaningful ways, one often needs to match not only two, but several schemas. This matching process establishes a (potentially large) set of attribute correspondences between multiple schemas that constitute a schema matching network. Various commercial and academic schema matching tools have been developed to support this task. However, as the matching is inherently uncertain, the heuristic techniques adopted by these tools give rise to results that are not completely correct. Thus, in practice, a post-matching human expert effort is needed to obtain a correct set of attribute correspondences.

Addressing this problem, our paper demonstrates how to leverage crowdsourcing techniques to validate the generated correspondences. We design validation questions with contextual information that can effectively guide the crowd workers. We analyze how to reduce overall human effort needed for this validation task. Through theoretical and empirical results, we show that by harnessing natural constraints defined on top of the schema matching network, one can significantly reduce the necessary human work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: Start making sense: The Chatty Web approach for global semantic agreements. JWS, 89–114 (2003)

    Google Scholar 

  2. von Ahn, L.: Human computation. In: DAC, pp. 418–419 (2009)

    Google Scholar 

  3. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha: Human-based character recognition via web security measures. Science, 1465–1468 (2008)

    Google Scholar 

  4. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic Schema Matching, Ten Years Later. PVLDB, 695–701 (2011)

    Google Scholar 

  5. Chen, K.T., Wu, C.C., Chang, Y.C., Lei, C.L.: A crowdsourceable qoe evaluation framework for multimedia content. In: MM, pp. 491–500 (2009)

    Google Scholar 

  6. Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data management systems. In: ICDE, p. 41 (2006)

    Google Scholar 

  7. Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables. In: SIGMOD, pp. 817–828 (2012)

    Google Scholar 

  8. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc., 20–28 (1979)

    Google Scholar 

  9. Di Lorenzo, G., Hacid, H., Paik, H.Y., Benatallah, B.: Data integration in mashups. In: SIGMOD, pp. 59–66 (2009)

    Google Scholar 

  10. Do, H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: PVLDB, pp. 610–621 (2002)

    Google Scholar 

  11. Duchateau, F., Coletta, R., Bellahsene, Z., Miller, R.J.: (Not) yet another matcher. In: CIKM. pp. 1537–1540 (2009)

    Google Scholar 

  12. Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. JIS, 845–859 (2010)

    Google Scholar 

  13. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: SIGMOD, pp. 1061–1066 (2010)

    Google Scholar 

  14. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD, pp. 847–860 (2008)

    Google Scholar 

  15. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.S.: eTuner: tuning schema matching software using synthetic scenarios. JVLDB 16, 97–122 (2007)

    Article  Google Scholar 

  16. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema matching. In: ICDE, pp. 57–68 (2005)

    Google Scholar 

  17. McCann, R., Shen, W.: Matching schemas in online communities: A web 2.0 approach. In: ICDE, pp. 110–119 (2008)

    Google Scholar 

  18. Nguyen, H., Fuxman, A., Paparizos, S., Freire, J., Agrawal, R.: Synthesizing products for online catalogs. PVLDB, 409–418 (2011)

    Google Scholar 

  19. Parameswaran, A.G., Garcia-Molina, H., Park, H., Polyzotis, N., Ramesh, A., Widom, J.: Crowdscreen: algorithms for filtering data with humans. In: SIGMOD, pp. 361–372 (2012)

    Google Scholar 

  20. Peukert, E., Eberius, J., Rahm, E.: AMC - A framework for modelling and comparing matching systems as matching processes. In: ICDE, pp. 1304–1307 (2011)

    Google Scholar 

  21. Qi, Y., Candan, K.S., Sapino, M.L.: Ficsr: feedback-based inconsistency resolution and query processing on misaligned data sources. In: SIGMOD, pp. 151–162 (2007)

    Google Scholar 

  22. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. JVLDB, 334–350 (2001)

    Google Scholar 

  23. Sheng, V.S., Provost, F.: Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers. In: SIGKDD, pp. 614–622 (2008)

    Google Scholar 

  24. Smith, K.P., Morse, M., Mork, P., Li, M., Rosenthal, A., Allen, D., Seligman, L., Wolf, C.: The role of schema matching in large enterprises. In: CIDR (2009)

    Google Scholar 

  25. Su, W., Wang, J., Lochovsky, F.: Holistic schema matching for web query interfaces. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 77–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Yan, T., Kumar, V.: CrowdSearch: exploiting crowds for accurate real-time image search on mobile phones. In: MobiSys, pp. 77–90 (2010)

    Google Scholar 

  27. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., Horvitz, E.: Human computation tasks with global constraints. In: CHI, pp. 217–226 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K. (2013). On Leveraging Crowdsourcing Techniques for Schema Matching Networks. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37450-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37450-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37449-4

  • Online ISBN: 978-3-642-37450-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics