Abstract
Naive Bayes Nearest Neighbor (NBNN) has been proposed as a powerful, learning-free, non-parametric approach for object classification. Its good performance is mainly due to the avoidance of a vector quantization step, and the use of image-to-class comparisons, yielding good generalization. In this paper we study the replacement of the nearest neighbor part with more elaborate and robust (sparse) representations, as well as trading performance for speed for practical purposes. The representations investigated are k-Nearest Neighbors (kNN), Iterative Nearest Neighbors (INN) solving a constrained least squares (LS) problem, Local Linear Embedding (LLE), a Sparse Representation obtained by l 1-regularized LS (\(SR_{l_1}\)), and a Collaborative Representation obtained as the solution of a l 2-regularized LS problem (\(CR_{l_2}\)). In particular, NIMBLE and K-DES descriptors proved viable alternatives to SIFT and, the NB\(SR_{l_1}\) and NBINN classifiers provide significant improvements over NBNN, obtaining competitive results on Scene-15, Caltech-101, and PASCAL VOC 2007 datasets, while remaining learning-free approaches (i.e., no parameters need to be learned).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR. IEEE Computer Society (2008)
Behmo, R., Marcombes, P., Dalalyan, A., Prinet, V.: Towards Optimal Naive Bayes Nearest Neighbor. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 171–184. Springer, Heidelberg (2010)
Wang, Z., Hu, Y., Chia, L.-T.: Image-to-Class Distance Metric Learning for Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 706–719. Springer, Heidelberg (2010)
Tuytelaars, T., Fritz, M., Saenko, K., Darrell, T.: The NBNN kernel. In: ICCV (2011)
Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801. IEEE (2009)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI 31 (2009)
Timofte, R., Van Gool, L.: Sparse representation based projections. In: BMVC (2011)
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. In: IEEE ICCV, vol. 290, pp. 2323–2326 (2001)
Timofte, R., Van Gool, L.: Iterative nearest neighbors for classification and dimensionality reduction. In: CVPR (2012)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: ICCV (2011)
Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. In: Advances in Neural Information Processing Systems (2010)
Kanan, C., Cottrell, G.W.: Robust classification of objects, faces, and flowers using natural image statistics. In: CVPR, pp. 2472–2479 (2010)
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP (1), pp. 331–340 (2009)
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS, pp. 801–808. MIT Press (2006)
Timofte, R., Van Gool, L.: Weighted collaborative representation and classification of images. In: ICPR (2012)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)
McCann, S., Lowe, D.: Local naive bayes nearest neighbor for image classification. In: CVPR (2012)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2) (2006)
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 594–611 (2006)
Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric lp-norm feature pooling for image classification. In: CVPR, pp. 2697–2704. IEEE (2011)
Gao, S., Tsang, I.W.H., Chia, L.T., Zhao, P.: Local features are not lonely - laplacian sparse coding for image classification. In: CVPR, pp. 3555–3561 (2010)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007), http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Timofte, R., Tuytelaars, T., Van Gool, L. (2013). Naive Bayes Image Classification: Beyond Nearest Neighbors. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-37331-2_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37330-5
Online ISBN: 978-3-642-37331-2
eBook Packages: Computer ScienceComputer Science (R0)