Abstract
For exascale computing systems, we propose (i) light-weight computational modules that utilize chaotic computations and customized identity maps to detect component failures, and (ii) statistical estimation methods that generate robustness estimates for the system and computations based on the module outputs. The diagnosis modules execute multiple Poincare and identity maps, which are customized to detect certain classes of failures in the compute nodes and interconnects. We propose statistical methods that generate robustness estimates for the system using the outputs of pipelined chains of diagnosis modules.
Chapter PDF
Similar content being viewed by others
References
Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer-Verlag Pub., Reading (1996)
International exascale software project, http://www.exascale.org
Rao, N.S.V.: Computational complexity issues in operative diagnosis of graph-based systems. IEEE Transactions on Computers 42(4), 447–457 (1993)
Rao, N.S.V.: Chaotic-Identity Maps for Robustness Estimation of Exascale Computations. In: IEEE Workshop on Fault Tolerance for HPC at Extreme Scale (2012)
Vapnik, V.N.: Statistical Learning Theory. John-Wiley and Sons, New York (1998)
von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., MaCarthy, J. (eds.) Automata Studies. Princeton University Press (1956)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rao, N.S.V. (2013). Resiliency in Exascale Systems and Computations Using Chaotic-Identity Maps. In: Caragiannis, I., et al. Euro-Par 2012: Parallel Processing Workshops. Euro-Par 2012. Lecture Notes in Computer Science, vol 7640. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36949-0_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-36949-0_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36948-3
Online ISBN: 978-3-642-36949-0
eBook Packages: Computer ScienceComputer Science (R0)