[go: up one dir, main page]

Skip to main content

Content Placement via the Exponential Potential Function Method

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

We empirically study the exponential potential function (EPF) approach to linear programming (LP), as applied to optimizing content placement in a video-on-demand (VoD) system. Even instances of modest size (e.g., 50 servers and 20k videos) stretch the capabilities of LP solvers such as CPLEX. These are packing LPs with block-diagonal structure, where the blocks are fractional uncapacitated facility location (UFL) problems. Our implementation of the EPF framework allows us to solve large instances to 1% accuracy 2000x faster than CPLEX, and scale to instances much larger than CPLEX can handle on our hardware.

Starting from the packing LP code described by Bienstock [4], we add many innovations. Our most interesting one uses priority sampling to shortcut lower bound computations, leveraging fast block heuristics to magnify these benefits. Other impactful changes include smoothing the duals to obtain effective Lagrangian lower bounds, shuffling the blocks after every round-robin pass, and better ways of searching for OPT and adjusting a critical scale parameter. By documenting these innovations and their practical impact on our testbed of synthetic VoD instances designed to mimic the proprietary instances that motivated this work, we aim to give a head-start to researchers wishing to apply the EPF framework in other practical domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K.: Optimal content placement for a large-scale VoD system. In: CoNEXT, pp. 4:1–4:12 (2010)

    Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theor. Comput. 8, 121–164 (2012)

    Article  MathSciNet  Google Scholar 

  3. Batra, G., Garg, N., Gupta, G.: Heuristic Improvements for Computing Maximum Multicommodity Flow and Minimum Multicut. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 35–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bienstock, D.: Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice. Kluwer, Boston (2002)

    MATH  Google Scholar 

  5. Bienstock, D.: Personal communication (2011)

    Google Scholar 

  6. Bienstock, D., Iyengar, G.: Approximating fractional packings and coverings in O(1/ε) iterations. SIAM J. Comput. 35(4), 825–854 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bienstock, D., Zuckerberg, M.: Solving LP Relaxations of Large-Scale Precedence Constrained Problems. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Borger, J.M., Kang, T.S., Klein, P.N.: Approximating concurrent flow with unit demands and capacities: an implementation. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and Matching: First DIMACS Implementation Challenge, pp. 371–386. American Mathematical Society (1993)

    Google Scholar 

  9. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM J. Comput. 34(4), 803–824 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duffield, N.G., Lund, C., Thorup, M.: Priority sampling for estimation of arbitrary subset sums. J. ACM 54(6) (2007)

    Google Scholar 

  11. Fleischer, L.: Approximating fractional multicommodity flow independent of the number of commodities. SIAM J. Discrete Math. 13(4), 505–520 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fratta, L., Gerla, M., Kleinrock, L.: The flow deviation method: An approach to store-and-forward communication network design. Networks 3(2), 97–133 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM J. Comput. 37(2), 630–652 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldberg, A.V., Oldham, J.D., Plotkin, S., Stein, C.: An Implementation of a Combinatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 338–352. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218, 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for convex programs with many blocks and coupling constraints. SIAM J. Optimiz. 4(1), 86–107 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grigoriadis, M.D., Khachiyan, L.G.: An exponential-function reduction method for block-angular convex programs. Networks 26, 59–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jang, Y.: Development and implementation of heuristic algorithms for multicommodity flow problems. PhD thesis, Columbia University (1996)

    Google Scholar 

  19. Klein, P.N., Young, N.: On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 320–327. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and covering linear programs. In: FOCS, pp. 494–504 (2007)

    Google Scholar 

  21. Leong, T., Shor, P., Stein, C.: Implementation of a combinatorial multicommodity flow algorithm. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and Matching: First DIMACS Implementation Challenge, pp. 387–406. American Mathematical Society (1993)

    Google Scholar 

  22. Mądry, A.: Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms. In: STOC, pp. 121–130 (2010)

    Google Scholar 

  23. Müller, D., Radke, K., Vygen, J.: Faster min-max resource sharing in theory and practice. Math. Program. Comput. 3, 1–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20, 257–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Radzik, T.: Fast deterministic approximation for the multicommodity flow problem. Math. Program. 77, 43–58 (1997)

    Article  MathSciNet  Google Scholar 

  27. Radzik, T.: Experimental study of a solution method for the multicommodity flow problem. In: ALENEX 2000, pp. 79–102 (2000)

    Google Scholar 

  28. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. ACM 37(2), 318–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. In: SIGCOMM, pp. 133–145 (2002)

    Google Scholar 

  30. Szegedy, M.: The DLT priority sampling is essentially optimal. In: STOC, pp. 150–158 (2006)

    Google Scholar 

  31. Thorup, M.: Confidence intervals for priority sampling. In: SIGMETRICS, pp. 252–263 (2006)

    Google Scholar 

  32. Wunderling, R.: The kernel simplex method. Talk at ISMP (August 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K. (2013). Content Placement via the Exponential Potential Function Method. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics