[go: up one dir, main page]

Skip to main content

Dynamic Kernel/Device Mapping Strategies for GPU-Assisted HPC Systems

  • Conference paper
Job Scheduling Strategies for Parallel Processing (JSSPP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7698))

Included in the following conference series:

Abstract

With their high computation throughput and outstanding performance-per-watt figures, the graphics processing units (GPU) are becoming increasingly important for high-performance computing (HPC) systems. Existing GPU execution environment restricts the GPU usage to local host node. This is suitable for standalone computer nodes, but becomes inefficient for HPC systems that consist of a large number of GPU-assisted nodes. In this paper, a novel framework is proposed to support dynamic GPU kernel/device mapping strategies for HPC systems. Adaptive mapping policies are designed to mitigate the impact of network transfer overhead. The performance of the framework is studied through extensive simulations. The results show that compared with existing local-only static mapping method, the proposed framework is capable of improving the system-wide GPU utilization rate and computation throughput, especially when the concurrent workloads exhibit different GPU usage intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barak, A., Ben-Nun, T., Levy, E., Shiloh, A.: A package for opencl based heterogeneous computing on clusters with many gpu devices. In: 2010 IEEE International Conference on Cluster Computing Workshops and Posters (Cluster Workshops), pp. 1–7 (September 2010)

    Google Scholar 

  2. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S., Skadron, K.: Rodinia: A benchmark suite for heterogeneous computing. In: IEEE International Symposium on Workload Characterization, IISWC 2009, pp. 44–54. IEEE (2009)

    Google Scholar 

  3. Danalis, A., Marin, G., McCurdy, C., Meredith, J., Roth, P., Spafford, K., Tipparaju, V., Vetter, J.: The scalable heterogeneous computing (shoc) benchmark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 63–74. ACM (2010)

    Google Scholar 

  4. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Ortí, E.: rcuda: Reducing the number of gpu-based accelerators in high performance clusters. In: 2010 International Conference on High Performance Computing and Simulation (HPCS), pp. 224–231. IEEE (2010)

    Google Scholar 

  5. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU Transparent Virtualization Component for High Performance Computing Clouds. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 379–391. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ranganathan, P.: Gvim: Gpu-accelerated virtual machines. In: Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing, pp. 17–24. ACM (2009)

    Google Scholar 

  7. Khronos-Group. Opencl - the open standard for parallel programming of heterogeneous systems (2011)

    Google Scholar 

  8. Kim, J., Kim, H., Lee, J., Lee, J.: Achieving a single compute device image in opencl for multiple gpus. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming, pp. 277–288. ACM (2011)

    Google Scholar 

  9. Merritt, A., Gupta, V., Verma, A., Gavrilovska, A., Schwan, K.: Shadowfax: scaling in heterogeneous cluster systems via gpgpu assemblies. In: Proceedings of the 5th International Workshop on Virtualization Technologies in Distributed Computing, pp. 3–10. ACM (2011)

    Google Scholar 

  10. Nickolls, J., Dally, W.: The gpu computing era. IEEE Micro. 30(2), 56–69 (2010)

    Article  Google Scholar 

  11. Nvidia. Gpu computing sdk (2011)

    Google Scholar 

  12. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: Gpu computing. Proceedings of the IEEE 96(5), 879–899 (2008)

    Article  Google Scholar 

  13. PBS-Works. Scheduling jobs onto nvidia tesla gpu computing processors using pbs professional (2011)

    Google Scholar 

  14. Trofinoff, S.: Scheduling gpus with slurm (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, J., Shi, W., Hong, B. (2013). Dynamic Kernel/Device Mapping Strategies for GPU-Assisted HPC Systems. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2012. Lecture Notes in Computer Science, vol 7698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35867-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35867-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35866-1

  • Online ISBN: 978-3-642-35867-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics