Abstract
Alzheimer Disease (AD) is one of the most common dementia and their socio-economic relevance is growing. Its diagnosis is sometimes made by excluding other dementias, but definitive confirmation must await the study post-mortem with brain tissue of the patient. According to internationally accepted criteria, we can only speak about probable or possible Alzheimer’s disease. The purpose of this paper is to contribute to improve early diagnosis of dementia and severity from automatic analysis performed by non-invasive automated intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET). These methodologies have the great advantage of being non invasive, low cost methodologies and have no side effects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sociedad Española de Neurología, http://www.sen.es
Van de Pol, L.A., et al.: The effects of age and Alzheimer’s disease on hippocampal volumes, a MRI study. Alzheimer’s and Dementia (2005)
Morris, J.C.: The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412b–2414b (1993)
American Psychiatric Association, Diagnostic and Statistical Manual of Mental disorders, 4th edn. Text Revision, Washington DC (2000)
Buiza, C.: Evaluación y tratamiento de los trastornos del lenguaje. Unidad de Memoria y Alzheimer. Matia Fundazioa. Donostia (2010)
Martinez-Sanchez, F., Garcia, M., Perez, E., Carro, J., Arana, J.M.: Patrones de Prosodia expresiva en pacientes con enfermedad de Alzheimer. Psicothema 24, 16–21 (2012)
Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., Kohno, M.: Influence of deteriorating ability of emotional comprehension on interpersonal behaviour in Alzheimer-type dementia. Brain and Cognition 47, 423–433 (2001)
Goodkind, M.S., Gyurak, A., McCarthy, M., Miller, B.L., Levenson, R.W.: Emotion regulation deficits in frontotemporal lobar degeneration and Alzheimer’s disease. Psychol. Aging 25(1), 30–37 (2010)
Cadieux, N., Greeve, K.: Emotion processing in Alzheimer’s disease. Journal of the International Neuropsychological Society 3, 411–419 (1997)
Faúndez Zanuy, M., Sesa-Nogueras, E., Monte-Moreno, E., Garre-Olmo, J., Lopez-de-Ipiña, K., Viñals, F., Puente, M.L.: Aplicaciones biométricas más allá de la seguridad. In: Proc. VI Jornadas de reconocimiento biométrico de personas, pp. 25–43 (2012)
Knapp, M.L.: Essentials of nonverbal communication. Holt, Rinehart & Winston (1980)
Cowie, E., et al.: Emotion Recognition in Human-Computer Interaction. IEEE Signal Processing Magazine 18(1), 32–80 (2001)
Plutchnik, R.: Emotion: A psychoevolutionary synthesis. Harper and Row (1980)
Pao, T.L., Chien, C.S., Yen, J.H., Chen, Y.T., Cheng, Y.M.: Continuous tracking of user emotion in mandarin emotional speech. In: Proceedings, 3rd International Conference on International Information Hiding and Multimedia Signal Processing, pp. 47–52 (2007)
Petrushin, V.A.: Emotion in speech: recognition and application to call centers. In: Proceedings, Conference on Artificial Neural Networks in Engineering, pp. 7–10 (1999)
Lee, C.M., Narayanan, S.: Emotion recognition using a data-driven fuzzy interference system. In: Proceedings, 8th ECSCT, pp. 157–160 (2003)
Kwon, O.W., Chan, K., Hao, J., Lee, T.W.: Emotion recognition by speech signals. In: Proc.8th European Conference on Speech Communication and Technology, pp. 125–128 (2003)
De Cheveigné, A., Kawahara, H.: YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America 111(4), 1917–1930 (2002)
Alonso, J., León, J., Alonso, I., Ferrer, M.A.: Automatic detection of pathologies in the voice by HOS base parameters. Journal on Applied Signal Processing 4, 275–284 (2001)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), article 27 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López-de-Ipiña, K. et al. (2012). New Approaches for Alzheimer’s Disease Diagnosis Based on Automatic Spontaneous Speech Analysis and Emotional Temperature. In: Bravo, J., Hervás, R., Rodríguez, M. (eds) Ambient Assisted Living and Home Care. IWAAL 2012. Lecture Notes in Computer Science, vol 7657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35395-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-35395-6_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35394-9
Online ISBN: 978-3-642-35395-6
eBook Packages: Computer ScienceComputer Science (R0)