Abstract
Nowadays definitive diagnosis of obstructive sleep apnoea (OSA) syndrome is expensive and time-consuming. Previous research on voice characteristics of OSA patients has shown that resonance, phonation and articulation differences arise when compared to healthy subjects. In this contribution we study different speech modeling techniques to detect patients with severe OSA envisioning the future classification of patients according to their priority of need identifying the most severe cases and reducing medical costs.
Hidden Markov Models (HMMs) are used, as generally applied in text-dependent speech recognition, for detecting voices of OSA patients. Specific acoustic properties of continuous speech are modeled attending to different linguistic contexts which reflect discriminative physiological characteristics found in OSA patients. Experimental results on the discrimination of apnoea voices are presented over a database including both severe OSA and healthy speakers. An 85% correct classification rate is achieved by using whole-sentence HMMs, outperforming previous schemes proposed in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eliot, S., Janita, L., Cheryl, B., Carole, L.: Transit time as a measure of arousal and respiratory effort in children with sleep-disorder breathing. Pediatric Research 53, 580 (2003)
Redline, S., Kump, K., Tishler, P.V., Browner, I., Ferrette, V.: Gender differences in sleep disordered breathing in a community-based sample. American Journal of Respiratory and Critical Care Medicine 149, 722 (1994)
Block, A.J., Boysen, P.G., Wynne, J.W., Hunt, L.A.: Sleep apnea, hypopnea and oxygen desaturation in normal subjects. New England Journal of Medicine 300, 513 (1979)
Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., Badr, S.: The occurrence of sleep-disordered breathing among middle-aged adults. New England Journal of Medicine 328, 1230 (1993)
Bahammam, A., Delaive, K., Ronald, J., Manfreda, J., Roos, L., Kryger, M.H.: Health care utilization in males with obstructive sleep apnea syndrome two years after diagnosis and treatment. Sleep 22, 740 (1999)
He, J., Kryger, M.H., Zorick, F.J., Conway, W., Roth, T.: Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest 94, 9 (1988)
Coccagna, G., Pollini, A., Provini, F.: Cardiovascular disorders and obstructive sleep apnea syndrome (2006)
Lloberes, P., Levy, G., Descals, C., Sampol, G., Roca, A., Sagales, T., de la Calzada, M.D.: Self-reported sleepiness while driving as a risk factor for traffic accidents in patients with obstructive sleep apnoea syndrome and in non-apnoeic snorers (2000)
Puertas, F., Pin, G., María, J., Durán, J.: Documento de consenso nacional sobre el síndrome de apneas-hipopneas del sueño (SAHS), grupo Español De Sueño, GES (2005)
Ayappa, I., Rapoport, D.M.: The upper airway in sleep: physiology of the pharynx (2003)
Lan, Z., Itoi, A., Takashima, M., Oda, M., Tomoda, K.: Difference of pharyngeal morphology and mechanical property between OSAHS patients and normal subjects. Auris Nasus Larynx 33, 433 (2006)
Fox, A.W., Monoson, P.K., Morgan, C.D.: Speech dysfunction of obstructive sleep apnea. A discriminant analysis of its descriptors. Chest 96, 589 (1989)
Blanco, J.L., Fernández, R., Pardo, D.D., Hernández, L., López, E., Toledano, D.T.: Apnoea voice characterization through vowel sounds analysis using Generative Gaussian Mixture Models. AVFA (2009)
Fernández, R., Blanco, J.L., Hernández, L., López, E., Alcázar, J., Toledano, D.T.: Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques. EURASIP J. Adv. Signal Process 6, 1 (2009)
Fernández, R., Blanco, J.L., Pardo, D.D., Hernández, L.A., López, E., Alcázar, J.: Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2009. CCIS, vol. 52, pp. 245–257. Springer, Heidelberg (2010)
Fernández, R., Hernández, L.A., López, E., Alcázar, J., Portillo, G., Toledano, D.T.: Design of a multimodal database for research on automatic detection of severe apnoea cases. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008), European Language Resources Association (ELRA), Marrakech (2008)
Young, S.J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book Version 3.4. Cambridge University Press (2006)
Blouet, R., Mokbel, C., Mokbel, H., Sanchez Soto, E., Chollet, G., Greige, H.: BECARS: A Free Software for Speaker Verification, pp. 145–148. ODYSSEY (2004)
Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzín speech database: Design of the phonetic corpus. In: Proceedings of the 3rd European Conference on Speech Communication and Technology, Eurospeech 1993, vol. I, p. 175 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benavides, A.M., Blanco, J.L., Fernández, A., Pozo, R.F., Toledano, D.T., Gómez, L.H. (2012). Using HMM to Detect Speakers with Severe Obstructive Sleep Apnoea Syndrome. In: Torre Toledano, D., et al. Advances in Speech and Language Technologies for Iberian Languages. Communications in Computer and Information Science, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35292-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-35292-8_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35291-1
Online ISBN: 978-3-642-35292-8
eBook Packages: Computer ScienceComputer Science (R0)