[go: up one dir, main page]

Skip to main content

Using HMM to Detect Speakers with Severe Obstructive Sleep Apnoea Syndrome

  • Conference paper
Advances in Speech and Language Technologies for Iberian Languages

Abstract

Nowadays definitive diagnosis of obstructive sleep apnoea (OSA) syndrome is expensive and time-consuming. Previous research on voice characteristics of OSA patients has shown that resonance, phonation and articulation differences arise when compared to healthy subjects. In this contribution we study different speech modeling techniques to detect patients with severe OSA envisioning the future classification of patients according to their priority of need identifying the most severe cases and reducing medical costs.

Hidden Markov Models (HMMs) are used, as generally applied in text-dependent speech recognition, for detecting voices of OSA patients. Specific acoustic properties of continuous speech are modeled attending to different linguistic contexts which reflect discriminative physiological characteristics found in OSA patients. Experimental results on the discrimination of apnoea voices are presented over a database including both severe OSA and healthy speakers. An 85% correct classification rate is achieved by using whole-sentence HMMs, outperforming previous schemes proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eliot, S., Janita, L., Cheryl, B., Carole, L.: Transit time as a measure of arousal and respiratory effort in children with sleep-disorder breathing. Pediatric Research 53, 580 (2003)

    Article  Google Scholar 

  2. Redline, S., Kump, K., Tishler, P.V., Browner, I., Ferrette, V.: Gender differences in sleep disordered breathing in a community-based sample. American Journal of Respiratory and Critical Care Medicine 149, 722 (1994)

    Google Scholar 

  3. Block, A.J., Boysen, P.G., Wynne, J.W., Hunt, L.A.: Sleep apnea, hypopnea and oxygen desaturation in normal subjects. New England Journal of Medicine 300, 513 (1979)

    Article  Google Scholar 

  4. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., Badr, S.: The occurrence of sleep-disordered breathing among middle-aged adults. New England Journal of Medicine 328, 1230 (1993)

    Article  Google Scholar 

  5. Bahammam, A., Delaive, K., Ronald, J., Manfreda, J., Roos, L., Kryger, M.H.: Health care utilization in males with obstructive sleep apnea syndrome two years after diagnosis and treatment. Sleep 22, 740 (1999)

    Google Scholar 

  6. He, J., Kryger, M.H., Zorick, F.J., Conway, W., Roth, T.: Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest 94, 9 (1988)

    Article  Google Scholar 

  7. Coccagna, G., Pollini, A., Provini, F.: Cardiovascular disorders and obstructive sleep apnea syndrome (2006)

    Google Scholar 

  8. Lloberes, P., Levy, G., Descals, C., Sampol, G., Roca, A., Sagales, T., de la Calzada, M.D.: Self-reported sleepiness while driving as a risk factor for traffic accidents in patients with obstructive sleep apnoea syndrome and in non-apnoeic snorers (2000)

    Google Scholar 

  9. Puertas, F., Pin, G., María, J., Durán, J.: Documento de consenso nacional sobre el síndrome de apneas-hipopneas del sueño (SAHS), grupo Español De Sueño, GES (2005)

    Google Scholar 

  10. Ayappa, I., Rapoport, D.M.: The upper airway in sleep: physiology of the pharynx (2003)

    Google Scholar 

  11. Lan, Z., Itoi, A., Takashima, M., Oda, M., Tomoda, K.: Difference of pharyngeal morphology and mechanical property between OSAHS patients and normal subjects. Auris Nasus Larynx 33, 433 (2006)

    Article  Google Scholar 

  12. Fox, A.W., Monoson, P.K., Morgan, C.D.: Speech dysfunction of obstructive sleep apnea. A discriminant analysis of its descriptors. Chest 96, 589 (1989)

    Article  Google Scholar 

  13. Blanco, J.L., Fernández, R., Pardo, D.D., Hernández, L., López, E., Toledano, D.T.: Apnoea voice characterization through vowel sounds analysis using Generative Gaussian Mixture Models. AVFA (2009)

    Google Scholar 

  14. Fernández, R., Blanco, J.L., Hernández, L., López, E., Alcázar, J., Toledano, D.T.: Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques. EURASIP J. Adv. Signal Process 6, 1 (2009)

    Google Scholar 

  15. Fernández, R., Blanco, J.L., Pardo, D.D., Hernández, L.A., López, E., Alcázar, J.: Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2009. CCIS, vol. 52, pp. 245–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Fernández, R., Hernández, L.A., López, E., Alcázar, J., Portillo, G., Toledano, D.T.: Design of a multimodal database for research on automatic detection of severe apnoea cases. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008), European Language Resources Association (ELRA), Marrakech (2008)

    Google Scholar 

  17. Young, S.J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book Version 3.4. Cambridge University Press (2006)

    Google Scholar 

  18. Blouet, R., Mokbel, C., Mokbel, H., Sanchez Soto, E., Chollet, G., Greige, H.: BECARS: A Free Software for Speaker Verification, pp. 145–148. ODYSSEY (2004)

    Google Scholar 

  19. Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzín speech database: Design of the phonetic corpus. In: Proceedings of the 3rd European Conference on Speech Communication and Technology, Eurospeech 1993, vol. I, p. 175 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benavides, A.M., Blanco, J.L., Fernández, A., Pozo, R.F., Toledano, D.T., Gómez, L.H. (2012). Using HMM to Detect Speakers with Severe Obstructive Sleep Apnoea Syndrome. In: Torre Toledano, D., et al. Advances in Speech and Language Technologies for Iberian Languages. Communications in Computer and Information Science, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35292-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35292-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35291-1

  • Online ISBN: 978-3-642-35292-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics