Abstract
We present an Algebraic Multigrid (AMG) method for graph Laplacian problems. The coarse graphs are constructed recursively by pair-wise aggregation, or matching as in [3] and we use an Algebraic Multilevel Iterations (AMLI) [1, 6] for the solution phase.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods. II. SIAM J. Numer. Anal., 27(6):1569–1590, 1990.
R. D. Falgout, P.S. Vassilevski, and L.T. Zikatanov. On two-grid convergence estimates. Numer. Linear Algebra Appl., 12(5–6):471–494, 2005.
H. Kim, J. Xu, and L. Zikatanov. A multigrid method based on graph matching for convection-diffusion equations. Numer. Linear Algebra Appl., 10(1–2):181–195, 2003.
Yousef Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, PA, 2nd edition, 2003.
U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press Inc., San Diego, CA, 2001.
P. S. Vassilevski. Multilevel block factorization preconditioners. Springer, New York, 2008.
Acknowledgements
The authors gratefully acknowledge the support by the Austrian Academy of Sciences and by the Austrian Science Fund (FWF), Project No. P19170-N18 and the support from the National Science Foundation under grants NSF-DMS 0810982 and NSF-OCI 0749202.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brannick, J., Chen, Y., Kraus, J., Zikatanov, L. (2013). An Algebraic Multigrid Method Based on Matching in Graphs. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-35275-1_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35274-4
Online ISBN: 978-3-642-35275-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)