Abstract
This paper examines the problem of modelling continuous, positive data by finite mixtures of inverse Gaussian distributions using the minimum message length (MML) principle. We derive a message length expression for the inverse Gaussian distribution, and prove that the parameter estimator obtained by minimising this message length is superior to the regular maximum likelihood estimator in terms of Kullback–Leibler divergence. Experiments on real data demonstrate the potential benefits of using inverse Gaussian mixture models for modelling continuous, positive data, particularly when the data is concentrated close to the origin or exhibits a strong positive skew.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)
Wallace, C.S., Dowe, D.L.: MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10(1), 73–83 (2000)
Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length, 1st edn. Information Science and Statistics. Springer (2005)
Agusta, Y., Dowe, D.: Unsupervised learning of gamma mixture models using minimum message length. In: Hamza, M. (ed.) Proceedings of the 3rd IASTED Conference on Artificial Intelligence and Applications, pp. 457–462. ACTA Press, Benalmadena (2003)
Grünwald, P.D.: The Minimum Description Length Principle. In: Adaptive Communication and Machine Learning. The MIT Press (2007)
Wallace, C.S., Boulton, D.: An invariant Bayes method for point estimation. Classification Society Bulletin 3(3), 11–34 (1975)
Wallace, C.S., Freeman, P.R.: Estimation and inference by compact coding. Journal of the Royal Statistical Society (Series B) 49(3), 240–252 (1987)
Schmidt, D.F.: A new message length formula for parameter estimation and model selection. In: Proc. 5th Workshop on Information Theoretic Methods in Science and Engineering, WITMSE 2011 (2011)
Banerjee, A.K., Bhattacharyya, G.K.: Bayesian results for the inverse gaussian distribution with an application. Technometrics 21(2), 247–251 (1979)
Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)
Rissanen, J.: Fisher information and stochastic complexity. IEEE Transactions on Information Theory 42(1), 40–47 (1996)
Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)
Bouguila, N., Ziou, D.: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1716–1731 (2007)
Richardson, S., Green, P.J.: On bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society. Series B (Methodological) 59(4), 731–792 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmidt, D.F., Makalic, E. (2012). Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-35101-3_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35100-6
Online ISBN: 978-3-642-35101-3
eBook Packages: Computer ScienceComputer Science (R0)