Abstract
We propose a novel region-based active contour model, which incorporates the image local and global information into a fuzzy energy function, providing a robust and accurate segmentation while accounting for intensity inhomogeneity. In this model, image intensities are assumed to have a Gaussian distribution with different means and variances. While the local information contributes to dealing with intensity inhomogeneity, the global information allows improving the performance of the model in the case of very noisy or blurred images. Another interesting property is that the energy function of the proposed model is convex with respect to the variable used to determine the contour. This makes the accuracy of the result invariant with respect to the position of the initial contour and more suitable for an automatic segmentation. Moreover, the energy function of the proposed model is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to validate the capabilities of the proposed model. Comparisons are provided with ground truth and other methods in the field to underline the superiority of our method in terms of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boscolo, R., Brown, M., McNitt-Gray, M.: Medical Image Segmentation with Knowledge-guided Robust Active Contours. Radiographics 22(2), 437–448 (2002)
Caselles, V., Catte, F., Coll, T., Dibos, F.: A Geometric Model for Active contours in Image Processing. Numerische Mathematik 66, 1–33 (1993)
Chan, T., Vese, L.: Active Contour without Edges. IEEE Trans. Ima. Process. 10(2), 266–277 (2001)
Chen, Z., Qui, T., Ruan, S.: Fuzzy adaptive level set algorithm for brain tissue segmentation. In: Proceedings of International Conference Signal Processing, Beijing, China, pp. 1047–1050 (2008)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Inter. J. Comp. Vi. 1, 321–332 (1988)
Khoo, V.S., Dearnaley, D.P., Finnigan, D.J., Padhani, A., Tanner, S.F., Leach, M.O.: Magnetic resonance imaging (MRI): considerations and applications in radiotheraphy treatment planning. Radiother. Oncol. 42, 1–15 (1997)
Krinidis, S., Chatzis, V.: Fuzzy energy-based active contour. IEEE Trans. Image Process. 18(12), 2747–2755 (2009)
Li, C., Kao, C., Gore, J., Ding, Z.: Implicit Active Contour Driven by Local Binary Fitting Energy. In: Proc. IEEE Conf. Comp. Vi. and Pat. Recog., pp. 1–7 (2007)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic Resonance Image Tissue Classfication using a Partial Volume Model. Neuroimage 13, 856–876 (2001)
Sirakov, N.M., Ushkala, K.: An Integral Active Contour Model for Convex Hull and Boundary Extraction. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part II. LNCS, vol. 5876, pp. 1031–1040. Springer, Heidelberg (2009)
Song, B., Chan, T.: A fast algorithm for level set based optimization. UCLA CAM Report 02-68 (2002)
Tylski, P., Stute, S., Grotus, N., Doyeux, K., Hapdey, S., Gardin, I., Vanderlinden, B., Buvat, I.: Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET. J. Nucl. Med. 51(2), 268–276 (2010)
Wang, L., He, L., Mishra, A., Li, C.: Active Contours Driven by Local Gaussian Distribution Fitting Energy. Signal Processing 89(12), 2435–2447 (2009)
Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.Y.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comp. Medi. Imag. and Grap. 33, 520–531 (2009)
Wang, X., Huang, D., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognition 43, 603–618 (2010)
Wang, Y., Bock, G.H., Van Klaveren, R.J., Van Ooyen, P., Tukker, W., Zhao, Y., Dorrius, M.D., Proenca, R.V., Post, W.J., Oudkerk, M.: Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability. Eur Radiol. 20(5), 1180–1187 (2009)
Xu, C., Pham, D.L.: Prince. J.L.: Medical Image Segmentation Using Deformable Models. SPIE Handbook on Medical Imaging: Med. Ima. Anal., 29–174 (2000)
Zhu, S.C., Lee, T.S., Yuille, A.L.: Region Competition: Unifying Snakes, Region Growing, Energy/Bayes/MDL for Multi-band Image Segmentation. In: Proceedings of ICCV 1995, pp. 416–416 (1995)
Zijdenbos, A.P., Dawant, B.M.: Brain segmentation and white matter lesion detection in MR images. Critical Reviews in Biomedical Eng. 22, 401–465 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thieu, Q.T., Luong, M., Rocchisani, JM., Sirakov, N.M., Viennet, E. (2012). Segmentation by a Local and Global Fuzzy Gaussian Distribution Energy Minimization of an Active Contour Model. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds) Combinatorial Image Analaysis. IWCIA 2012. Lecture Notes in Computer Science, vol 7655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34732-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-34732-0_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34731-3
Online ISBN: 978-3-642-34732-0
eBook Packages: Computer ScienceComputer Science (R0)