[go: up one dir, main page]

Skip to main content

Morphological Wavelets for Panchromatic and Multispectral Image Fusion

  • Conference paper
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 195))

Abstract

Image fusion is the combining process of relevant information from one or more images to create a single image with more informational content. In remote sensing applications, the spatial resolution of the multispectral images is enhanced using detail information from the panchromatic images which have a higher resolution. This process is known as pansharpening. One of the most used pansharpening method is based on wavelet decomposition. The edge information from the panchromatic image is injected in the wavelet decomposition of the multispectral image. In this paper a fusion method based on morphological wavelets is proposed. The main advantage of morphological wavelets is the computing complexity, because only integer operations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS+PAN data. IEEE Transactions on Geoscience and Remote Sensing 45(10), 98–102 (2007)

    Article  Google Scholar 

  2. Alparone, L., et al.: Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest. IEEE Transactions on Geoscience and Remote Sensing 45(10), 3012–3021 (2007)

    Article  Google Scholar 

  3. Coltuc, D., Bolon, P., Chassery, J.-M.: Exact histogram specification. IEEE Transactions on Image Processing 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  4. De, I., Chanda, B.: A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Signal Processing 86(5), 924–936 (2006)

    Article  MATH  Google Scholar 

  5. Dong, J., Zhuang, D., Huang, Y., Fu, J.: Survey of Multispectral Image Fusion Techniques in Remote Sensing Applications. Image Fusion and Its Applications, Intech., 1–22 (2011)

    Google Scholar 

  6. Gomez, R.B., Jazaeri, A., Kafatos, M.: Wavelet-based hyperspectral and multispectral image fusion. In: Proc. SPIE. Geo-Spatial Image and Data Exploitation II, vol. 4383, pp. 36–42

    Google Scholar 

  7. González-Audícana, M., Saleta, J.L., Catalán, R.G., García, R.: Fusion of Multispectral and Panchromatic Images Using Improved IHS and PCA Mergers Based on Wavelet Decomposition. IEEE Transactions on Geoscience and Remote Sensing 42(6), 1291–1299 (2004)

    Article  Google Scholar 

  8. Goutsias, J., Heijmans, H.J.: Nonlinear multiresolution signal decomposition schemes, Part 1: morphological pyramids. IEEE Trans. Image Processing 9, 1862–1876 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heijmans, H.J., Goutsias, J.: Nonlinear multiresolution signal decomposition schemes, Part 2: morphological wavelets. IEEE Trans. Image Processing 9, 1897–1913 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mitianoudis, N., Tzimiropoulos, G., Stathaki, T.: Fast Wavelet-based Pansharpening of Multi-Spectral Images. In: Proc. of 2010 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 11–16 (2010)

    Google Scholar 

  11. Nobuhara, H., Hirota, K.: A Fuzzification of MorphologicalWavelets Based on Fuzzy Relational Calculus and its Application to Image Compression/Reconstruction. Journal of Advanced Computational Intelligence and Intelligent Informatics 8(4), 373–378 (2004)

    Google Scholar 

  12. Open Source Computer Vision Library, Reference Manual, Copyright 1999-2001 Intel Corporation

    Google Scholar 

  13. Shah, V.P., Younan, N.H., King, R.L.: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Transactions on Geoscience and Remote Sensing 46(5), 1323–1335 (2008)

    Article  Google Scholar 

  14. SATELLITE IMAGING CORPORATION, http://www.satimagingcorp.com/satellite-sensors

  15. Yang, S., Wang, M., Jiao, L.: ‘Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis. Information Fusion 13(3), 177–184 (2012)

    Article  Google Scholar 

  16. Multispectral Image Database, http://www1.cs.columbia.edu/CAVE/databases/multispectral/

  17. Global Observatory for Ecosystem Services, Michigan State University, http://landsat.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu Ioan Bejinariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bejinariu, S.I., Rotaru, F., Niţă, C.D., Costin, M. (2013). Morphological Wavelets for Panchromatic and Multispectral Image Fusion. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33941-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33941-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33940-0

  • Online ISBN: 978-3-642-33941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics