[go: up one dir, main page]

Skip to main content

Tracing Conformational Changes in Proteins Represented at a Coarse Level

  • Conference paper
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010)

Abstract

Many large protein complexes undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. It is not always possible to obtain a high resolution structure for very large complexes. Electron cryo-microscopy (Cryo-EM) enables the representation of large macromolecular structures at a medium resolution level (4–8Å). Traditional conformational search methods cannot be applied to medium resolution data where structural information may be partial or missing. Additionally, simulating large scale conformational changes in proteins require a massive amount of computational efforts. We apply a search method from robotics to structural information obtained from medium resolution Cryo-EM maps, modeled to approximate backbone trace level. The pathways obtained by this method can be useful in understanding protein motions, providing reliable results for the medium resolution data. To provide a baseline validation for our method, we tested it on Adenylate Kinase and Cyanovirin. To test the data on actual cryo-EM determined structures, we simulated the conformational opening of the GroEL single ring complex. We show that we can produce low energy conformational pathways which correspond to known structural data. The method presented here is a promising step towards exploring the conformational motion of even larger complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perutz, M.F.: Mechanisms of cooperativity and allosteric regulation in proteins. Quart. Rev. Biophys. 22, 139–236 (1989)

    Article  Google Scholar 

  2. Schmid, M.F., Sherman, M.B., Matsudaira, P., Chiu, W.: Structure of the acrosomal bundle. Nature 431, 104–107 (2004)

    Article  Google Scholar 

  3. Jiang, W., Li, Z., Zhang, Z., Baker, M., Prevelige Jr., P.E., Chiu, W.: Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nature Structural Biology 10(2), 131–135 (2003)

    Article  Google Scholar 

  4. Schroeder, G., Brunger, A.T., Levitt, M.: Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007)

    Article  Google Scholar 

  5. Lasker, K., Dror, O., Shatsky, M., Nussinov, R., Wolfson, H.J.: EMatch: discovery of high resolution structural homologues of protein domains in intermediate resolution cryo-EM maps. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 28–39 (2007)

    Article  Google Scholar 

  6. Case, D.A., Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Computat. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  7. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Head-Gordon, T., Brown, S.: Minimalist models for protein folding and design. Curr. Opin. Struct. Biol. 13(2), 160–167 (2003)

    Article  Google Scholar 

  9. Whitford, P.C., Miyashita, O., Levy, Y., Onucic, J.N.: Conformational transitions of adenylate kinase: Switching by cracking. Journal of Molecular Biology 366(5), 1661–1671 (2007)

    Article  Google Scholar 

  10. Schuyler, A., Jernigan, R., Qasba, P., Ramakrishnan, B., Chirikjian, G.: Iterative cluster-nma: A tool for generating conformational transitions in proteins. Proteins 74, 760–776 (2009)

    Article  Google Scholar 

  11. Zheng, W., Brooks, B.: Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model. J. Mol. Biol. 346(3), 745–759 (2005)

    Article  Google Scholar 

  12. Temiz, N., Meirovitch, E., Bahar, I.: Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)n-nmr relaxation data. Proteins 57, 468–480 (2004)

    Article  Google Scholar 

  13. Gohlke, H., Thorpe, M.: A natural coarse graining for simulating large biomolecular motion. Biophysical Journal 9, 2115–2120 (2006)

    Article  Google Scholar 

  14. Weiss, D., Levitt, M.: Can morphing methods predict intermediate structures? J. Mol. Biol. 385, 665–674 (2009)

    Article  Google Scholar 

  15. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  16. Kavraki, L.E., Švestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  17. Shehu, A., Kavraki, L., Clementi, C.: On the characterization of protein native state ensembles. Biophysical Journal 92(5), 1503–1511 (2007)

    Article  Google Scholar 

  18. Shehu, A., Kavraki, L., Clementi, C.: Multiscale characterization of protein conformational ensembles. Proteins: Structure, Function and Bioinformatics 76(4), 837–851 (2009)

    Article  Google Scholar 

  19. Haspel, N., Geisbrech, B., Lambris, J., Kavraki, L.E.: Multi-scale characterization of the energy landscape of proteins with application to the c3d/efb-c complex. Proteins: Structure, Function and Bioinformatics 78(4), 1004–1014 (2010)

    Article  Google Scholar 

  20. Cortés, J., Siméon, T., de Angulo, V.R., Guieysse, D., Remauld-Siméon, M., Tran, V.: A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21(suppl. 1), i116–i125 (2005)

    Google Scholar 

  21. Shehu, A., Clementi, C., Kavraki, L.E.: Sampling conformation space to model equilibrium fluctuations in proteins. Algorithmica 48, 303–327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomas, S., Tang, X., Tapia, L., Amato, N.M.: Simulating protein motions with rigidity analysis. J. Comp. Biol. 14(6), 839–855 (2007)

    Article  MATH  Google Scholar 

  23. Chiang, T.H., Apaydin, M.S., Brutlag, D.L., Hsu, D., Latombe, J.-C.: Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics. J. Comp. Biol. 14(5), 578–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yao, P., Dhanik, A., Marz, N., Propper, R., Kou, C., Liu, G., van den Bedem, H., Latombe, J.-C., Halperin-Landsberg, I., Altman, R.B.: Efficient algorithms to explore conformation spaces of flexible protein loops. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(4), 534–545 (2008)

    Article  Google Scholar 

  25. Tang, X., Thomas, S., Tapia, L., Amato, N.M.: Tools for simulating and analyzing rna folding kinetics. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), San Francisco, CA, USA, pp. 268–282 (April 2007)

    Google Scholar 

  26. Shehu, A., Clementi, C., Kavraki, L.E.: Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations. Proteins: Structure, Function and Bioinformatics 65, 164–179 (2006)

    Article  Google Scholar 

  27. Raveh, B., Enosh, A., Furman-Schueler, O., Halperin, D.: Rapid sampling of molecular motions with prior information constraints. Plos Comp. Biol. (2009) (in press)

    Google Scholar 

  28. Haspel, N., Moll, M., Baker, M., Chiu, W., Kavraki, L.E.: Tracing conformational changes in proteins. BMC Structural Biology (2010) (in press)

    Google Scholar 

  29. Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate resolution density maps. Structure 15, 7–19 (2007)

    Article  Google Scholar 

  30. Abeysinghe, S.S., Ju, T., Baker, M., Chiu, W.: Shape modeling and matching in identifying protein structure from low-resolution images. In: ACM Symposium on Solid and Physical Modeling, pp. 223–232 (2007)

    Google Scholar 

  31. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  Google Scholar 

  32. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Computer Aided Design 39(5), 352–360 (2007)

    Article  Google Scholar 

  33. Zhang, J., Baker, M., Schroeder, G., Douglas, N., Reissman, S., Jakana, J., Dougherty, M., Fu, C., Levitt, M., Ludtke, S., Frydman, J., Chiu, W.: Mechanism of folding chamber closure in a group ii chaperonin. Nature 463, 379–383 (2010)

    Article  Google Scholar 

  34. Ballester, P.J., Richards, W.G.: Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 28(10), 1711–1723 (2007)

    Article  Google Scholar 

  35. Brown, S., Fawzi, N., Head-Gordon, T.: Coarse grained sequences for protein folding and design. Proc. Nat. Acad. USA 100, 10,712–10,717 (2003)

    Google Scholar 

  36. Doruker, P., Jernigan, R., Bahar, I.: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comput. Chem. 23(1), 119–127 (2002)

    Article  Google Scholar 

  37. Ladd, A.M.: Motion planning for physical simulation. Ph.D. dissertation, Dept. of Computer Science, Rice University, Houston, TX (Dec. 2006)

    Google Scholar 

  38. Şucan, I.A., Kruse, J.F., Yim, M., Kavraki, L.E.: Reconfiguration for modular robots using kinodynamic motion planning. In: ASME Dynamic Systems and Control Conference. Michigan, Ann Arbor (2008)

    Google Scholar 

  39. Tsianos, K., Kavraki, L.E.: Replanning: A powerful planning strategy for hard kinodynamic problems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 1667–1672 (September 2008)

    Google Scholar 

  40. Botos, I., O’Keefe, B., Shenoy, S., Cartner, L., Ratner, D., et al.: Structures of the complexes of a potent anti-hiv protein cyanovirin-n and high mannose oligosaccharides. J. Biol. Chem. 277, 34336–34342 (2002)

    Article  Google Scholar 

  41. Zeilstra-Ryalls, J., Fayet, O., Georgopolous, C.: The universally conserved GroE (Hsp60) chaperonins. Annu. Rev. Microbiol. 45, 301–325 (1991)

    Article  Google Scholar 

  42. Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: Toward multiscale analysis of protein landscapes. Proteins: Structure, Function and Bioinformatics 68(3), 646–661 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Haspel, N. (2012). Tracing Conformational Changes in Proteins Represented at a Coarse Level. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics