Abstract
Many large protein complexes undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. It is not always possible to obtain a high resolution structure for very large complexes. Electron cryo-microscopy (Cryo-EM) enables the representation of large macromolecular structures at a medium resolution level (4–8Å). Traditional conformational search methods cannot be applied to medium resolution data where structural information may be partial or missing. Additionally, simulating large scale conformational changes in proteins require a massive amount of computational efforts. We apply a search method from robotics to structural information obtained from medium resolution Cryo-EM maps, modeled to approximate backbone trace level. The pathways obtained by this method can be useful in understanding protein motions, providing reliable results for the medium resolution data. To provide a baseline validation for our method, we tested it on Adenylate Kinase and Cyanovirin. To test the data on actual cryo-EM determined structures, we simulated the conformational opening of the GroEL single ring complex. We show that we can produce low energy conformational pathways which correspond to known structural data. The method presented here is a promising step towards exploring the conformational motion of even larger complexes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Perutz, M.F.: Mechanisms of cooperativity and allosteric regulation in proteins. Quart. Rev. Biophys. 22, 139–236 (1989)
Schmid, M.F., Sherman, M.B., Matsudaira, P., Chiu, W.: Structure of the acrosomal bundle. Nature 431, 104–107 (2004)
Jiang, W., Li, Z., Zhang, Z., Baker, M., Prevelige Jr., P.E., Chiu, W.: Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nature Structural Biology 10(2), 131–135 (2003)
Schroeder, G., Brunger, A.T., Levitt, M.: Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007)
Lasker, K., Dror, O., Shatsky, M., Nussinov, R., Wolfson, H.J.: EMatch: discovery of high resolution structural homologues of protein domains in intermediate resolution cryo-EM maps. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 28–39 (2007)
Case, D.A., Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Computat. Chem. 26, 1668–1688 (2005)
Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Head-Gordon, T., Brown, S.: Minimalist models for protein folding and design. Curr. Opin. Struct. Biol. 13(2), 160–167 (2003)
Whitford, P.C., Miyashita, O., Levy, Y., Onucic, J.N.: Conformational transitions of adenylate kinase: Switching by cracking. Journal of Molecular Biology 366(5), 1661–1671 (2007)
Schuyler, A., Jernigan, R., Qasba, P., Ramakrishnan, B., Chirikjian, G.: Iterative cluster-nma: A tool for generating conformational transitions in proteins. Proteins 74, 760–776 (2009)
Zheng, W., Brooks, B.: Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model. J. Mol. Biol. 346(3), 745–759 (2005)
Temiz, N., Meirovitch, E., Bahar, I.: Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)n-nmr relaxation data. Proteins 57, 468–480 (2004)
Gohlke, H., Thorpe, M.: A natural coarse graining for simulating large biomolecular motion. Biophysical Journal 9, 2115–2120 (2006)
Weiss, D., Levitt, M.: Can morphing methods predict intermediate structures? J. Mol. Biol. 385, 665–674 (2009)
Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)
Kavraki, L.E., Švestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 566–580 (1996)
Shehu, A., Kavraki, L., Clementi, C.: On the characterization of protein native state ensembles. Biophysical Journal 92(5), 1503–1511 (2007)
Shehu, A., Kavraki, L., Clementi, C.: Multiscale characterization of protein conformational ensembles. Proteins: Structure, Function and Bioinformatics 76(4), 837–851 (2009)
Haspel, N., Geisbrech, B., Lambris, J., Kavraki, L.E.: Multi-scale characterization of the energy landscape of proteins with application to the c3d/efb-c complex. Proteins: Structure, Function and Bioinformatics 78(4), 1004–1014 (2010)
Cortés, J., Siméon, T., de Angulo, V.R., Guieysse, D., Remauld-Siméon, M., Tran, V.: A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21(suppl. 1), i116–i125 (2005)
Shehu, A., Clementi, C., Kavraki, L.E.: Sampling conformation space to model equilibrium fluctuations in proteins. Algorithmica 48, 303–327 (2007)
Thomas, S., Tang, X., Tapia, L., Amato, N.M.: Simulating protein motions with rigidity analysis. J. Comp. Biol. 14(6), 839–855 (2007)
Chiang, T.H., Apaydin, M.S., Brutlag, D.L., Hsu, D., Latombe, J.-C.: Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics. J. Comp. Biol. 14(5), 578–593 (2007)
Yao, P., Dhanik, A., Marz, N., Propper, R., Kou, C., Liu, G., van den Bedem, H., Latombe, J.-C., Halperin-Landsberg, I., Altman, R.B.: Efficient algorithms to explore conformation spaces of flexible protein loops. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(4), 534–545 (2008)
Tang, X., Thomas, S., Tapia, L., Amato, N.M.: Tools for simulating and analyzing rna folding kinetics. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), San Francisco, CA, USA, pp. 268–282 (April 2007)
Shehu, A., Clementi, C., Kavraki, L.E.: Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations. Proteins: Structure, Function and Bioinformatics 65, 164–179 (2006)
Raveh, B., Enosh, A., Furman-Schueler, O., Halperin, D.: Rapid sampling of molecular motions with prior information constraints. Plos Comp. Biol. (2009) (in press)
Haspel, N., Moll, M., Baker, M., Chiu, W., Kavraki, L.E.: Tracing conformational changes in proteins. BMC Structural Biology (2010) (in press)
Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate resolution density maps. Structure 15, 7–19 (2007)
Abeysinghe, S.S., Ju, T., Baker, M., Chiu, W.: Shape modeling and matching in identifying protein structure from low-resolution images. In: ACM Symposium on Solid and Physical Modeling, pp. 223–232 (2007)
Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)
Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Computer Aided Design 39(5), 352–360 (2007)
Zhang, J., Baker, M., Schroeder, G., Douglas, N., Reissman, S., Jakana, J., Dougherty, M., Fu, C., Levitt, M., Ludtke, S., Frydman, J., Chiu, W.: Mechanism of folding chamber closure in a group ii chaperonin. Nature 463, 379–383 (2010)
Ballester, P.J., Richards, W.G.: Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 28(10), 1711–1723 (2007)
Brown, S., Fawzi, N., Head-Gordon, T.: Coarse grained sequences for protein folding and design. Proc. Nat. Acad. USA 100, 10,712–10,717 (2003)
Doruker, P., Jernigan, R., Bahar, I.: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comput. Chem. 23(1), 119–127 (2002)
Ladd, A.M.: Motion planning for physical simulation. Ph.D. dissertation, Dept. of Computer Science, Rice University, Houston, TX (Dec. 2006)
Şucan, I.A., Kruse, J.F., Yim, M., Kavraki, L.E.: Reconfiguration for modular robots using kinodynamic motion planning. In: ASME Dynamic Systems and Control Conference. Michigan, Ann Arbor (2008)
Tsianos, K., Kavraki, L.E.: Replanning: A powerful planning strategy for hard kinodynamic problems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 1667–1672 (September 2008)
Botos, I., O’Keefe, B., Shenoy, S., Cartner, L., Ratner, D., et al.: Structures of the complexes of a potent anti-hiv protein cyanovirin-n and high mannose oligosaccharides. J. Biol. Chem. 277, 34336–34342 (2002)
Zeilstra-Ryalls, J., Fayet, O., Georgopolous, C.: The universally conserved GroE (Hsp60) chaperonins. Annu. Rev. Microbiol. 45, 301–325 (1991)
Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: Toward multiscale analysis of protein landscapes. Proteins: Structure, Function and Bioinformatics 68(3), 646–661 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Haspel, N. (2012). Tracing Conformational Changes in Proteins Represented at a Coarse Level. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-32615-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32614-1
Online ISBN: 978-3-642-32615-8
eBook Packages: Computer ScienceComputer Science (R0)