Abstract
Amid the variety of clustering algorithms and the different types of obtainable partitions on the same dataset, a framework that generalizes and explains the aspects of the clustering problem has become necessary. This study casts the problem of clustering a given set of data points as a problem of clustering the associated pairwise distances, thereby capturing the essence of the common definition of clustering found in literature. The main goal is to obtain a general cluster validity index, in particular, to generalize the average silhouette index to fuzzy partitions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balcan, M.-F., Blum, A., Vempala, S.: A discriminative framework for clustering via similarity functions. In: Proceedings of the 40th annual ACM Symposium on Theory of Computing, STOC (2008)
Bezdek, J.C.: Pattern Recognition with fuzzy objective function algorithms. Plenum Press (1981)
Blum, A.: Thoughts on clustering. In: NIPS Workshop ”Clustering: Science or Art” (2009)
Campello, R., Hruschka, E.: A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems 157, 2858–2875 (2006)
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)
Guyon, I., von Luxburg, U., Williamson, R.C.: Clustering: Science or art? In: NIPS Workshop ”Clustering: Science or Art” (2009)
Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathematical Programming 79, 191–215 (1997)
Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Kleinberg, J.: An impossibility theorem for clustering. Proceedings of Advances in Neural Information Processing Systems 15, 463–470 (2002)
Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematics. Statistics and Probability, Berkeley, CA, vol. 2, pp. 281–297 (1967)
Pelillo, M.: What is a cluster? Perspectives from game theory. In: NIPS Workshop ”Clustering: Science or Art” (2009)
Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics 20, 53–65 (1987)
Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 3(8), 841–846 (1991)
Xu, R., Wunsch, D.I.I.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rawashdeh, M., Ralescu, A. (2012). A Pairwise Distance View of Cluster Validity. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-31709-5_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31708-8
Online ISBN: 978-3-642-31709-5
eBook Packages: Computer ScienceComputer Science (R0)