[go: up one dir, main page]

Skip to main content

Learning from Mixture of Experimental Data: A Constraint–Based Approach

  • Conference paper
Artificial Intelligence: Theories and Applications (SETN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7297))

Included in the following conference series:

  • 1733 Accesses

Abstract

We propose a novel approach for learning graphical models when data coming from different experimental conditions are available. We argue that classical constraint–based algorithms can be easily applied to mixture of experimental data given an appropriate conditional independence test. We show that, when perfect statistical inference are assumed, a sound conditional independence test for mixtures of experimental data can consist in evaluating the null hypothesis of conditional independence separately for each experimental condition. We successively indicate how this test can be modified in order to take in account statistical errors. Finally, we provide “Proof-of-Concept” results for demonstrating the validity of our claims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eberhardt, F.: Sufficient condition for pooling data from different distributions. In: ERROR (2006)

    Google Scholar 

  2. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. J. Mach. Learn. Res. 11, 171–234 (2010)

    MathSciNet  Google Scholar 

  3. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. J. Mach. Learn. Res. 11, 235–284 (2010)

    MathSciNet  Google Scholar 

  4. Lagani, V., Tsamardinos, I.: Structure-based variable selection for survival data. Bioinformatics 26(15), 1887–1894 (2010)

    Article  Google Scholar 

  5. Cooper, G.F., Yoo, C.: Causal Discovery from a Mixture of Experimental and Observational Data. In: UAI (1999)

    Google Scholar 

  6. Tian, J., Pearl, J.: Causal discovery from changes. In: UAI (2001)

    Google Scholar 

  7. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (March 2000)

    Google Scholar 

  8. Eaton, D., Murphy, K.: Exact bayesian structure learning from uncertain interventions. In: AISTAT (2007)

    Google Scholar 

  9. Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Murphy, K.P.: The Bayes Net Toolbox for MATLAB

    Google Scholar 

  11. Tsamardinos, I., Brown, L., Constantin, A.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

    Article  Google Scholar 

  12. Richardson, T., Spirtes, P.: Ancestral Graph Markov Models. The Annals of Statistics 30(4), 962–1030 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.-B., Geng, Z.: Active Learning of Causal Networks with Intervention Experiments and Optimal Designs. Journal of Machine Learning Research 9, 2523–2547 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Hyttinen, A., Hoyer, P.O., Eberhardt, F.: Noisy-OR Models with Latent Confounding. In: UAI (2011)

    Google Scholar 

  15. Claassen, T., Heskes, T.: Learning causal network structure from multiple (in)dependence models. In: PGM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lagani, V., Tsamardinos, I., Triantafillou, S. (2012). Learning from Mixture of Experimental Data: A Constraint–Based Approach. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds) Artificial Intelligence: Theories and Applications. SETN 2012. Lecture Notes in Computer Science(), vol 7297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30448-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30448-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30447-7

  • Online ISBN: 978-3-642-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics