Abstract
In the paper we describe a generalized net G ACOA realizing an arbitrary algorithms for ant colony optimization. In this sense, this net is universal for all standard algorithms for ant colony optimization, since it describes the way of functioning and results of their work. Then, we discuss the way of constructing a GN that includes the G ACOA as a subnet. In this way, we ensure the generalized net tokens’ optimal transfer with regard to the results of G ACOA . Thus, we construct a generalized net, featuring an optimization component and thus optimally functioning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.: Generalized Nets. World Scientific, Singapore (1991)
Atanassov, K.: Generalized nets and some travelling salesman problems. In: Atanassov, K. (ed.) Applications of Generalized Nets, pp. 68–81. World Scientific, Singapore (1993)
Atanassov, K.: Generalized Nets in Artificial Intelligence. Generalized nets and Expert Systems, vol. 1. “Prof. M. Drinov”. Academic Publishing House, Sofia (1998)
Atanassov, K.: On Generalized Nets Theory. “Prof. M. Drinov”. Academic Publishing House, Sofia (2007)
Atanassov, K., Aladjov, H.: Generalized Nets in Artificial Intelligence. Generalized nets and Machine Learning, vol. 2. “Prof. M. Drinov”. Academic Publishing House, Sofia (2001)
Atanassova, V.: Generalized nets, Transition, Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets (2009), http://ifigenia.org/wiki/Generalized_nets , http://ifigenia.org/wiki/Transition
Chountas, P., Kolev, B., Rogova, E., Tasseva, V., Atanassov, K.: Generalized Nets in Artificial Intelligence. Generalized nets, Uncertain Data and Knowledge Engineering, vol. 4. “Prof. M. Drinov”. Academic Publishing House, Sofia (2007)
Fidanova, S., Atanassov, K.: Generalized net models of the process of ant colony optimization with intuitionistic fuzzy estimations. In: Atanassov, K., Shannon, A. (eds.) Proceedings of the Ninth International Workshop on Generalized Nets, Sofia, July 4, vol. 1, pp. 41–48 (2008)
Fidanova, S., Atanassov, K.: Generalized net models for the process of hybrid ant colony optimization. Comptes Rendus de l’Academie bulgare des Sciences, Tome 61(12), 1535–1540 (2008)
Fidanova, S., Atanassov, K.: Generalized Nets as Tools for Modeling of the Ant Colony Optimization Algorithms. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 326–333. Springer, Heidelberg (2010)
Ibri, S., Drias, H., Nourelfath, M.: Integrated Emergency Vehicle Dispatching and Covering: A Parallel Ant-Tabu Approach. In: 8th International Conference of Modeling and Simulation (MOSIM 2010) Hammamet, Tunisia, Lavoisier, May 10-12, pp. 1039–1045 (2010)
Kolev, B., El-Darzi, E., Sotirova, E., Petronias, I., Atanassov, K., Chountas, P., Kodogiannis, V.: Generalized Nets in Artificial Intelligence. Generalized nets, Relational Data Bases and Expert Systems, vol. 3. “Prof. M. Drinov”. Academic Publishing House, Sofia (2006)
Liu, N., Huang, B., Pan, X.: Using the Ant Algorithm to Derive Pareto Fronts for Multiobjective Siting of Emergency Service Facilities. Transportation Research Record: Journal of the Transportation Research Board, No. 1935, Transportation Research Board of the National Academies, Washington, D.C., 120–129 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Atanassova, V., Fidanova, S., Chountas, P., Atanassov, K. (2012). A Generalized Net with an ACO-Algorithm Optimization Component. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-29843-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29842-4
Online ISBN: 978-3-642-29843-1
eBook Packages: Computer ScienceComputer Science (R0)