Abstract
In this paper we present a particle swarm optimization (PSO) based approach for marker-less full body motion tracking. The objective function is smoothed in an annealing scheme and then quantized. This allows us to extract a pool of candidate best particles. The algorithm selects a global best from such a pool to force the PSO jump out of stagnation. Experiments on 4-camera datasets demonstrate the robustness and accuracy of our method. The tracking is conducted on 2 PC nodes with multi-core CPUs, connected by 1 GigE. This makes our system capable of accurately recovering full body movements with 14 fps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chapman, B., Jost, G., van der Pas, R., Kuck, D.: Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press (2007)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Tr. Evolut. Comp. 6(1), 58–73 (2002)
Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Int. Conf. on Pattern Recognition, pp. 126–133 (2000)
Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. Comput. Vision 61(2), 185–205 (2005)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for bayesian filtering. Statistics and Computing 10(1), 197–208 (2000)
John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image Vis. Comput. 28, 1530–1547 (2010)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)
Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm Intelligence Based Searching Schemes for Articulated 3D Body Motion Tracking. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 115–126. Springer, Heidelberg (2011)
Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. Journal of Computer Vision 87, 4–27 (2010)
Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Workshop on 3D Information Extraction for Video Analysis and Mining in Conjuction with CVPR, pp. 45–50. IEEE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krzeszowski, T., Kwolek, B., Rymut, B., Wojciechowski, K., Josinski, H. (2012). Real-Time Tracking of Full-Body Motion Using Parallel Particle Swarm Optimization with a Pool of Best Particles. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-29353-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29352-8
Online ISBN: 978-3-642-29353-5
eBook Packages: Computer ScienceComputer Science (R0)