[go: up one dir, main page]

Skip to main content

Ensemble Detection of Colorectal Lesions for CT Colonography

  • Conference paper
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2011)

Abstract

Even though different computer-aided detection (CAD) systems for computed tomographic colonography (CTC) have similar overall detection accuracies, they are known to detect different types of lesions and false positives. We implemented an ensemble CAD scheme for merging the detection results of different CAD systems in CTC. After normalizing of the lesion-likelihood data between different systems, a Bayesian classifier was used for determining the final detections. For evaluation, we collected 218 abnormal patients with 263 lesions ≥6 mm. The detection accuracies of three CAD systems were compared with that of their ensemble CAD scheme by use of independent training and testing. The preliminary results indicate that the ensemble CAD scheme can yield a higher overall detection accuracy than can individual CAD systems. In particular, the ensemble scheme was able to detect flat lesions at high sensitivity without compromising a high polyp detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Winawer, S.J., Fletcher, R.H., Miller, L., et al.: Colorectal Cancer Screening: Clinical Guidelines and Rationale. Gastroenterology 112, 594–642 (1997)

    Article  Google Scholar 

  2. Levin, B., Lieberman, D.A., McFarland, B., et al.: Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: a Joint Guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer and the American College of Radiology. CA Cancer J. Clin. 58, 130–160 (2008)

    Article  Google Scholar 

  3. Johnson, C.D., Chen, M.H., Toledano, A.Y., et al.: Accuracy of CT Colonography for Detection of Large Adenomas and Cancers. N. Engl. J. Med. 359, 1207–1217 (2008)

    Article  Google Scholar 

  4. Pickhardt, P.J.: Differential Diagnosis of Polypoid Lesions seen at CT Colonography (Virtual Colonoscopy). Radiographics 24, 1535–1556 (2004)

    Article  Google Scholar 

  5. Dachman, A.H., Obuschowski, N.A., Hoffmeister, J.W., et al.: Effect of Computer-Aided Detection for CT Colonography in a Multireader, Multicase Trial. Radiology 256, 827–835 (2010)

    Article  Google Scholar 

  6. Lawrence, E.M., Pickhardt, P.J., Kim, D.H., Robbins, J.B.: Colorectal Polyps: Stand-Alone Performance of Computer-Aided Detection in a Large Asymptomatic Screening Population. Radiology 256, 791–798 (2010)

    Article  Google Scholar 

  7. Yoshida, H., Näppi, J.: CAD in CT Colonography without and with Oral Contrast Agents: Progress and Challenges. Comput. Med. Imaging Graph 31, 267–284 (2007)

    Article  Google Scholar 

  8. Hein, P.A., Krug, L.D., Romano, V.C., Kandel, S., Hamm, B., Rogalla, P.: Computer-Aided Detection in Computed Tomography Colonography with Full Fecal Tagging: Comparison of Standalone Performance of 3 Automated Polyp Detection Systems. Can Assoc. Radiol. J. 61, 102–108 (2010)

    Article  Google Scholar 

  9. Park, H.S., Kim, S.H., Kim, J.H., et al.: Computer-Aided Polyp Detection on CT Colonography: Comparison of Three Systems in a High-Risk Human Population. Eur. J. Radiol. 75, 147–157 (2010)

    Article  Google Scholar 

  10. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience (2004)

    Google Scholar 

  11. Niemeijer, M., Loog, M., Abràmoff, M.D., Viergever, M.A., Prokop, M., van Ginneken, B.: On Combining Computer-Aided Detection Systems. IEEE Trans. Med. Imaging 30, 215–223 (2011)

    Article  Google Scholar 

  12. van Ginneken, B., Armato III, S.G., de Hoop, B., et al.: Comparing and Combining Algorithms for Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Scans: The ANODE09 Study. Med. Image Anal. 14, 707–722 (2010)

    Article  Google Scholar 

  13. Näppi, J., Yoshida, H.: Fully Automated Three-Dimensional Detection of Polyps in Fecal-Tagging CT Colonography. Acad. Radiol. 14, 287–300 (2007)

    Article  Google Scholar 

  14. Yoshida, H., Näppi, J.: Three-Dimensional Computer-Aided Diagnosis Scheme for Detection of Colonic Polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)

    Article  Google Scholar 

  15. Näppi, J., Yoshida, H.: Feature-Guided Analysis for Reduction of False Positives in CAD of Polyps for Computed Tomographic Colonography. Med. Phys. 30, 1592–1601 (2003)

    Article  Google Scholar 

  16. Näppi, J., Yoshida, H.: Automated Detection of Polyps with CT Colonography: Evaluation of Volumetric Features for Reduction of False-Positive Findings. Acad. Radiol. 9, 386–397 (2002)

    Article  Google Scholar 

  17. Kupinski, M.A., Edwards, D.C., Giger, M.L., Metz, C.E.: Ideal Observer Approximation using Bayesian Classification Neural Networks. IEEE Trans. Med. Imaging 20, 886–899 (2001)

    Article  Google Scholar 

  18. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  19. Ambroise, C., McLachlan, J.H.: Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data. PNAS 99, 6562–6566 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Näppi, J.J., Regge, D., Yoshida, H. (2012). Ensemble Detection of Colorectal Lesions for CT Colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2011. Lecture Notes in Computer Science, vol 7029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28557-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28557-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28556-1

  • Online ISBN: 978-3-642-28557-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics