[go: up one dir, main page]

Skip to main content

Active Learning for Sparse Least Squares Support Vector Machines

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

Abstract

For least squares support vector machine (LSSVM) the lack of sparse, while the standard sparse algorithm exist a problem that it need to mark all of training data. We propose an active learning algorithm based on LSSVM to solve sparse problem. This method first construct a minimum classification LSSVM, and then calculate the uncertainty of the sample, select the closest category to mark the sample surface, and finally joined the training set of labeled samples and the establishment of a new classifier, repeat the process until the model accuracy to meet Requirements. 6 provided in the UCI data sets on the experimental results show that the proposed method can effectively improve the sparsity of LSSVM, and can reduce the cost labeled samples.

This paper is supported by National Nature Science Foundation (60863011), Yunnan Nature Science Foundation (2008CC023), Yunnan young and middle-aged science and technology leaders Foundation (2007PY01-11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, N.Y (1995)

    Book  MATH  Google Scholar 

  2. Dong, J.X., Krzyzak, A., Suen, C.: Fast SVM training algorithm with decomposition on very large data sets. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(4), 603–618 (2005)

    Article  Google Scholar 

  3. Joachims, T.: Making large scale SVM learning practical, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9(3), 293–300 (1998)

    Article  Google Scholar 

  6. Li, M., Sethi, I.K.: Confidence-based active learning. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(8), 1251–1261 (2006)

    Article  Google Scholar 

  7. Simon, H.A., Lea, G.: Problem solving and rule education: a unified view knowledge and organization. Erbuam. 15(2), 63–73 (1974)

    Google Scholar 

  8. Lewis, D.D., Gale, W.A.: sequential algorithm for training text classifiers. In: Croft, W.B., Rijsbergen, C.J. (eds.) Proc. of Annual SIGIR Conf. on Research and Development in Information Retrieval SIGIR 1994, vol. 15(2), pp. 3–12. Springer, London (1994)

    Google Scholar 

  9. Freund, Y., Seung, H., Shamir, E., et al.: Selective sampling using the query by committee algorithm. Machine Learning 28(2), 133–168 (1997)

    Article  MATH  Google Scholar 

  10. Kenji, F.Z.: Statistical active learning in multilayer perceptrons. IEEE Transaction on Neural Networks, 17–26 (2000)

    Google Scholar 

  11. LindenBaum, M., Markovitch, S., RusaKov, D.: selective sampling for nearest neighbor classifiers. Machine Learning 54(2), 125–152 (2004)

    Article  MATH  Google Scholar 

  12. Mitchell, T.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)

    Article  MathSciNet  Google Scholar 

  13. Hoegaerts, L., Suykens, J.A.K., Vandewalle, J., De Moor, B.: A comparison of pruning algorithms for sparse least squares support vector machines. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1247–1253. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Tao, S., Chen, D., Hu, W., et al.: CCA sparse least squares support vector machine classifiers. Journal of Zhejiang University (Engineering Science) 41(7), 1093–1096 (2007)

    Google Scholar 

  15. Tong, S.: Chang. E: Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, Ottawa, Canada, pp. 107–118 (2001)

    Google Scholar 

  16. Michael, I.M., Graham, E.P., Daniel, P.E.: Support Vector Machine Active Learning for Music Retrieval. Multimedia Systems 12(1), 3–13 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, J., Yu, Z., Zong, H., Zhao, X. (2011). Active Learning for Sparse Least Squares Support Vector Machines. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics