Abstract
For least squares support vector machine (LSSVM) the lack of sparse, while the standard sparse algorithm exist a problem that it need to mark all of training data. We propose an active learning algorithm based on LSSVM to solve sparse problem. This method first construct a minimum classification LSSVM, and then calculate the uncertainty of the sample, select the closest category to mark the sample surface, and finally joined the training set of labeled samples and the establishment of a new classifier, repeat the process until the model accuracy to meet Requirements. 6 provided in the UCI data sets on the experimental results show that the proposed method can effectively improve the sparsity of LSSVM, and can reduce the cost labeled samples.
This paper is supported by National Nature Science Foundation (60863011), Yunnan Nature Science Foundation (2008CC023), Yunnan young and middle-aged science and technology leaders Foundation (2007PY01-11).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, N.Y (1995)
Dong, J.X., Krzyzak, A., Suen, C.: Fast SVM training algorithm with decomposition on very large data sets. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(4), 603–618 (2005)
Joachims, T.: Making large scale SVM learning practical, pp. 169–184. MIT Press, Cambridge (1999)
Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20(3), 273–297 (1995)
Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9(3), 293–300 (1998)
Li, M., Sethi, I.K.: Confidence-based active learning. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(8), 1251–1261 (2006)
Simon, H.A., Lea, G.: Problem solving and rule education: a unified view knowledge and organization. Erbuam. 15(2), 63–73 (1974)
Lewis, D.D., Gale, W.A.: sequential algorithm for training text classifiers. In: Croft, W.B., Rijsbergen, C.J. (eds.) Proc. of Annual SIGIR Conf. on Research and Development in Information Retrieval SIGIR 1994, vol. 15(2), pp. 3–12. Springer, London (1994)
Freund, Y., Seung, H., Shamir, E., et al.: Selective sampling using the query by committee algorithm. Machine Learning 28(2), 133–168 (1997)
Kenji, F.Z.: Statistical active learning in multilayer perceptrons. IEEE Transaction on Neural Networks, 17–26 (2000)
LindenBaum, M., Markovitch, S., RusaKov, D.: selective sampling for nearest neighbor classifiers. Machine Learning 54(2), 125–152 (2004)
Mitchell, T.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)
Hoegaerts, L., Suykens, J.A.K., Vandewalle, J., De Moor, B.: A comparison of pruning algorithms for sparse least squares support vector machines. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1247–1253. Springer, Heidelberg (2004)
Tao, S., Chen, D., Hu, W., et al.: CCA sparse least squares support vector machine classifiers. Journal of Zhejiang University (Engineering Science) 41(7), 1093–1096 (2007)
Tong, S.: Chang. E: Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, Ottawa, Canada, pp. 107–118 (2001)
Michael, I.M., Graham, E.P., Daniel, P.E.: Support Vector Machine Active Learning for Music Retrieval. Multimedia Systems 12(1), 3–13 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zou, J., Yu, Z., Zong, H., Zhao, X. (2011). Active Learning for Sparse Least Squares Support Vector Machines. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_85
Download citation
DOI: https://doi.org/10.1007/978-3-642-23887-1_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23886-4
Online ISBN: 978-3-642-23887-1
eBook Packages: Computer ScienceComputer Science (R0)