[go: up one dir, main page]

Skip to main content

Tetrahedral Meshing of Volumetric Medical Images Respecting Image Edges

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

  • 1945 Accesses

Abstract

In this paper, a variational tetrahedral meshing approach is used to adapt a tetrahedral mesh to the underlying CT volumetric data so that image edges are well approximated in the mesh. Afterwards, tetrahedra in the mesh are classified into regions whose image characteristics are similar. Three different clustering schemes are proposed to classify tetrahedra, while the clustering scheme viewing the mesh as an undirected graph achieved best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spanel, M., Krsek, P., Stancl, V.: Vector Segmentation of Volumetric Image Data: Tetrahedral Meshing Constrained by Image Edges. In: Proceedings of the 3rd International Joint Converence on Computer Vision, Imaging and Computer Graphics Theaory and Applications, pp. 134–138 (2010)

    Google Scholar 

  2. George, P.-L., Borouchaki, H.: Delaunay Triangulation and Meshing: Application to Finite Elements, 413 pages, (1998)

    Google Scholar 

  3. Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26(3), 57 (2007)

    Article  Google Scholar 

  4. Zhang, Y., Bajaj, C., Sohn, B.-S.: Adaptive and quality 3D meshing from imaging data. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 286–291 (2003)

    Google Scholar 

  5. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Trans. Graph. 24(3), 617–625 (2005)

    Article  Google Scholar 

  6. Fabbri, R., Costa, L., da, F., Torelli, J.C., Bruno, O.M.: 2D Euclidean Distance Transform Algorithms: A Comparative Survey. ACM Computing Surveys 40(1), 1–44 (2008)

    Article  Google Scholar 

  7. Du, Q., Emelianenko, M., Ju, L.: Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fehr, J., Burkhardt, H.: 3d rotation invariant local binary patterns. Pattern Recognition 29, 1–4 (2008)

    Article  Google Scholar 

  9. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging 18 (1999)

    Google Scholar 

  10. Ng, S.K., McLachlan, G.J.: On some variants of the em algorithm for fitting mixture models. Austrian Journal of Statistics 23, 143–161 (2003)

    Google Scholar 

  11. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  12. Kurita, T.: An efficient agglomerative clustering algorithm for region growing. In: Proc. of IAPR Workshop on Machine Vision Applications, pp. 210–213 (1991)

    Google Scholar 

  13. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  14. Botsch, M., Pauly, M., Rossl, C., Bischoff, S., Kobbelt, L.: Geometric modeling based on triangle meshes. In: SIGGRAPH Course Notes (2006)

    Google Scholar 

  15. Taubin, G.: Geometric signal processing on polygonal meshes (2000)

    Google Scholar 

  16. Vollmer, J., Mencl, R., Mller, H.: Improved laplacian smoothing of noisy surface meshes. In: Computer Graphics Forum, vol. 18, pp. 131–138. Blackwell Publishing, Malden (1999)

    Google Scholar 

  17. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209–216 (1997)

    Google Scholar 

  18. Hildebrandt, K., Polthier, K.: Constraint-based fairing of surface meshes. In: Proc. of the Fifth Eurographics Symposium on Geometry Processing, pp. 203–212 (2007)

    Google Scholar 

  19. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 167–174 (1998)

    Article  Google Scholar 

  20. Tournois, J., Srinivasan, R., Alliez, P.: Perturbing slivers in 3d delaunay meshes. In: Proceedings of the 18th International Meshing Roundtable, pp. 157–173 (2009)

    Google Scholar 

  21. Veksler, O.: Gcmex – matlab wrapper for graph cuts multi-label energy minimization (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Španěl, M., Kršek, P., Švub, M., Štancl, V. (2011). Tetrahedral Meshing of Volumetric Medical Images Respecting Image Edges. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics