[go: up one dir, main page]

Skip to main content

On Memoryless Quantitative Objectives

  • Conference paper
Fundamentals of Computation Theory (FCT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6914))

Included in the following conference series:

Abstract

In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist.

In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.

This work was partially supported by FWF NFN Grant S11407-N23 (RiSE) and a Microsoft faculty fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bojańczyk, M.: Beyond omega-regular languages. In: Proc. of STACS. LIPIcs, vol. 5, pp. 11–16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  3. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Transactions on Computational Logic 11(4) (2010)

    Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)

    Google Scholar 

  8. Colcombet, T., Niwiński, D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352(1-3), 190–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2) (2007)

    Google Scholar 

  11. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  13. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics 28, 85–91 (1988)

    Article  MATH  Google Scholar 

  16. Henzinger, T.A.: From boolean to quantitative notions of correctness. In: Proc. of POPL: Principles of Programming Languages, pp. 157–158. ACM, New York (2010)

    Google Scholar 

  17. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  18. Kopczyński, E.: Half-positional determinacy of infinite games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 336–347. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time average payoff. Siam Review 11, 604–607 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mertens, J.F., Neyman, A.: Stochastic games. International Journal of Game Theory 10, 53–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, University of California, Berkeley (1995)

    Google Scholar 

  23. Puterman, M.L.: Markov Decision Processes. John Wiley and Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  24. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. USA 39, 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) New Trends in Formal Languages, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  26. Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 275–289. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Zwick, U., Paterson, M.: The complexity of mean-payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Doyen, L., Singh, R. (2011). On Memoryless Quantitative Objectives. In: Owe, O., Steffen, M., Telle, J.A. (eds) Fundamentals of Computation Theory. FCT 2011. Lecture Notes in Computer Science, vol 6914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22953-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22953-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22952-7

  • Online ISBN: 978-3-642-22953-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics