[go: up one dir, main page]

Skip to main content

Efficient Evaluation of k-NN Queries Using Spatial Mashups

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6849))

Included in the following conference series:

Abstract

K-nearest-neighbor (k-NN) queries have been widely studied in time-independent and time-dependent spatial networks. In this paper, we focus on k-NN queries in time-dependent spatial networks where the driving time between two locations may vary significantly at different time of the day. In practice, it is costly for a database server to collect real-time traffic data from vehicles or roadside sensors to compute the best route from a user to an object of interest in terms of the driving time. Thus, we design a new spatial query processing paradigm that uses a spatial mashup to enable the database server to efficiently evaluate k-NN queries based on the route information accessed from an external Web mapping service, e.g., Google Maps, Yahoo! Maps and Microsoft Bing Maps. Due to the expensive cost and limitations of retrieving such external information, we propose a new spatial query processing algorithm that uses shared execution through grouping objects and users based on the road network topology and pruning techniques to reduce the number of external requests to the Web mapping service and provides highly accurate query answers. We implement our algorithm using Google Maps and compare it with the basic algorithm. The results show that our algorithm effectively reduces the number of external requests by 90% on average with high accuracy, i.e., the accuracy of estimated driving time and query answers is over 92% and 87%, respectively.

The work described in this paper was partially supported by a grant from City University of Hong Kong (Project No. 7200216) and the National Natural Science Foundation of China under Grant 61073185.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jensen, C.S.: Database aspects of location-based services. In: Location-Based Services, pp. 115–148. Morgan Kaufmann, San Francisco (2004)

    Chapter  Google Scholar 

  2. Lee, D.L., Zhu, M., Hu, H.: When location-based services meet databases. Mobile Information Systems 1(2), 81–90 (2005)

    Article  Google Scholar 

  3. Gedik, B., Liu, L.: MobiEyes: A distributed location monitoring service using moving location queries. IEEE TMC 5(10), 1384–1402 (2006)

    Google Scholar 

  4. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In: ACM SIGMOD (2004)

    Google Scholar 

  5. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB (2003)

    Google Scholar 

  6. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving objects. In: ACM SIGMOD (2005)

    Google Scholar 

  7. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: ACM SIGMOD (2005)

    Google Scholar 

  8. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)

    Google Scholar 

  9. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient k-nearest neighbor search in time-dependent spatial networks. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 432–449. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Towards k-nearest neighbor search in time-dependent spatial network databases. In: International Workshop on Databases in Networked Systems (2010)

    Google Scholar 

  11. George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms: A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 460–477. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Vancea, A., Grossniklaus, M., Norrie, M.C.: Database-driven web mashups. In: IEEE ICWE (2008)

    Google Scholar 

  13. Levandoski, J.J., Mokbel, M.F., Khalefa, M.E.: Preference query evaluation over expensive attributes. In: Proc. of ACM CIKM (2010)

    Google Scholar 

  14. Google Maps/Google Earth APIs Terms of Service, http://code.google.com/apis/maps/terms.html (last updated: May 27, 2009)

  15. Google Maps, http://maps.google.com

  16. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: IEEE ICDE (2006)

    Google Scholar 

  17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: ACM SIGMOD (2008)

    Google Scholar 

  19. Huang, X., Jensen, C.S., Šaltenis, S.: The islands approach to nearest neighbor querying in spatial networks. In: Anshelevich, E., Egenhofer, M.J., Hwang, J. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases. In: IEEE ICDE (2002)

    Google Scholar 

  21. Chang, K.C.C., Hwang, S.W.: Minimal probing: Supporting expensive predicates for top-k queries. In: ACM SIGMOD (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D., Chow, CY., Li, Q., Zhang, X., Xu, Y. (2011). Efficient Evaluation of k-NN Queries Using Spatial Mashups. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22922-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22921-3

  • Online ISBN: 978-3-642-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics