[go: up one dir, main page]

Skip to main content

Consistent Labeling of Rotating Maps

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

  • 1749 Accesses

Abstract

Dynamic maps that allow continuous map rotations, e.g., on mobile devices, encounter new issues unseen in static map labeling before. We study the following dynamic map labeling problem: The input is a static, labeled map, i.e., a set P of points in the plane with attached non-overlapping horizontal rectangular labels. The goal is to find a consistent labeling of P under rotation that maximizes the number of visible labels for all rotation angles such that the labels remain horizontal while the map is rotated. A labeling is consistent if a single active interval of angles is selected for each label such that labels neither intersect each other nor occlude points in P at any rotation angle.

We first introduce a general model for labeling rotating maps and derive basic geometric properties of consistent solutions. We show NP-completeness of the active interval maximization problem even for unit-square labels. We then present a constant-factor approximation for this problem based on line stabbing, and refine it further into an EPTAS. Finally, we extend the EPTAS to the more general setting of rectangular labels of bounded size and aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Been, K., Daiches, E., Yap, C.: Dynamic map labeling. IEEE Trans. Visual. and Comput. Graphics 12(5), 773–780 (2006)

    Article  Google Scholar 

  3. Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG 1991), pp. 281–288 (1991)

    Google Scholar 

  5. Gemsa, A., Nöllenburg, M., Rutter, I.: Consistent Labeling of Rotating Maps. ArXiv e-prints, arXiv:1104.5634 (April 2011)

    Google Scholar 

  6. Gervais, E., Nussbaum, D., Sack, J.-R.: DynaMap: a context aware dynamic map application. In: Proc. GISPlanet, Estoril, Lisbon, Portugal (2005)

    Google Scholar 

  7. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klau, G.W., Mutzel, P.: Optimal labeling of point features in rectangular labeling models. Math. Programming (Series B), 435–458 (2003)

    Google Scholar 

  9. van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom. Theory Appl. 13, 21–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mote, K.D.: Fast point-feature label placement for dynamic visualizations. Inform. Visual. 6(4), 249–260 (2007)

    Article  Google Scholar 

  12. Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary labeling. In: Proc. 18th ACM SIGSPATIAL Int’l Conf. Adv. Geo. Inform. Syst., pp. 310–319. ACM, New York (2010)

    Google Scholar 

  13. Petzold, I., Gröger, G., Plümer, L.: Fast screen map labeling—data-structures and algorithms. In: Proc. 23rd Int’l. Cartographic Conf. (ICC 2003), pp. 288–298 (2003)

    Google Scholar 

  14. Wagner, F., Wolff, A., Kapoor, V., Strijk, T.: Three rules suffice for good label placement. Algorithmica 30(2), 334–349 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gemsa, A., Nöllenburg, M., Rutter, I. (2011). Consistent Labeling of Rotating Maps. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics