[go: up one dir, main page]

Skip to main content

Statistical Machine Learning for Automatic Assessment of Physical Activity Intensity Using Multi-axial Accelerometry and Heart Rate

  • Conference paper
Artificial Intelligence in Medicine (AIME 2011)

Abstract

This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crouter, S.E., Churilla, J.R., Bassett, D.R.: Estimating energy expenditure using accelerometers. Eur. J. Appl. Physiol. 98(6), 601–612 (2006)

    Article  Google Scholar 

  2. Freedson, P.S., Miller, K.: Objective monitoring of physical activity using motion sensors and heart rate. Res. Q Exercise Sport 71(2 Suppl), S21 (2000)

    Article  Google Scholar 

  3. Gotshalk, L.A., Berger, R.A., Kraemer, W.J.: Cardiovascular responses to a high-volume continuous circuit resistance training protocol. J. Strength Cond. Res. 18(4), 760 (2004)

    Google Scholar 

  4. Strath, S.J., Brage, S., Ekelund, U.: Integration of physiological and accelerometer data to improve physical activity assessment. Med. Sci. Sport Exer. 37(11), S563 (2005)

    Article  Google Scholar 

  5. Plasqui, G., Westerterp, K.R.: Accelerometry and heart rate as a measure of physical fitness: Cross-validation. Med. Sci. Sport Exer. 38(8), 1510 (2006)

    Article  Google Scholar 

  6. Bonomi, A.G., Plasqui, G., Goris, A.H.C., Westerterp, K.R.: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J. Appl. Physiol. 107(3), 655 (2009)

    Article  Google Scholar 

  7. Munguia Tapia, E., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 37–40. IEEE, Los Alamitos (2007)

    Google Scholar 

  8. Albinali, F., Intille, S.S., Haskell, W., Rosenberger, M.: Using wearable activity type detection to improve physical activity energy expenditure estimation. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 311–320. ACM, New York (2010)

    Chapter  Google Scholar 

  9. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: An adapted Gaussian Mixture Model approach to accelerometry-based movement classification using time-domain features. In: 28th Annual International Conference Engineering in Medicine and Biology Society, EMBS 2006, pp. 3600–3603. IEEE, Los Alamitos (2008)

    Google Scholar 

  11. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE T. Inf. Technol. B 12(1), 20–26 (2008)

    Article  Google Scholar 

  12. Krause, A., Siewiorek, D.P., Smailagic, A., Farringdon, J.: Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: Proceedings of the 7th IEEE International Symposium on Wearable Computers (ISWC 2003). IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  13. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Duchêne, F., Garbay, C., Rialle, V.: Learning recurrent behaviors from heterogeneous multivariate time-series. Artif. Intell. Med. 39(1), 25–47 (2007)

    Article  Google Scholar 

  15. Freedson, P.S., Melanson, E., Sirard, J.: Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sport Exer. 30(5), 777 (1998)

    Article  Google Scholar 

  16. Brage, S., Brage, N., Franks, P.W., Ekelund, U., Wong, M.Y., Andersen, L.B., Froberg, K., Wareham, N.J.: Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J. Appl. Physiol. 96(1), 343 (2004)

    Article  Google Scholar 

  17. Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M., Swartz, A.M., Strath, S.J., O’Brien, W.L., Bassett Jr., D.R., Schmitz, K.H., Emplaincourt, P.O., et al.: Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport Exer. 32(9 Suppl), S498 (2000)

    Article  Google Scholar 

  18. Benito Peinado, P.J., Álvarez Sánchez, M., Díaz Molina, V., Peinado Lozano, A.B., Calderón Montero, F.J.: Aerobic Energy Expenditure and Intensity Prediction during a Specific Circuit Weight Training: A Pilot Study. J. Hum. Sport Exerc. 5(2), 134–145 (2010)

    Article  Google Scholar 

  19. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid discriminative/generative approach for modeling human activities. In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), Citeseer (2005)

    Google Scholar 

  20. He, J., Li, H., Tan, J.: Real-time daily activity classification with wireless sensor networks using Hidden Markov Model. In: 29th Annual International Conference Engineering in Medicine and Biology Society, EMBS 2007, pp. 3192–3195. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  21. García-García, F., Martínez-Sarriegui, I., Gómez, E.J., Rigla, M., Hernando, M.E.: Automatic assessment of physical activity using multi-axial accelerometry and heart rate. J. Diab. Tech. Therap. 13(2), 182 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-García, F. et al. (2011). Statistical Machine Learning for Automatic Assessment of Physical Activity Intensity Using Multi-axial Accelerometry and Heart Rate. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. AIME 2011. Lecture Notes in Computer Science(), vol 6747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22218-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22218-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22217-7

  • Online ISBN: 978-3-642-22218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics