[go: up one dir, main page]

Skip to main content

Possibilistic Classifiers for Uncertain Numerical Data

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6717))

  • 912 Accesses

Abstract

In many real-world problems, input data may be pervaded with uncertainty. Naive possibilistic classifiers have been proposed as a counterpart to Bayesian classifiers to deal with classification tasks in presence of uncertainty. Following this line here, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. We consider two types of uncertainty: i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an extension principle-based algorithm to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haouari, B., Ben Amor, N., Elouadi, Z., Mellouli, K.: Naïve possibilistic network classifiers. Fuzzy Set and Systems 160(22), 3224–3238 (2009)

    Article  MATH  Google Scholar 

  2. Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A rule-based classification algorithm for uncertain data. In: IEEE International Conference on Data Engineering (2009)

    Google Scholar 

  3. Hüllermeier, E., Beringer, J.: Case-based learning in a bipolar possibilistic framework. Inter. J. of Intelligent Systems, 1119–1134 (2008)

    Google Scholar 

  4. Borgelt, C., Gebhardt, J.: A naïve Bayes style possibilistic classifier. In: Proc. 7th Europ. Cong. on Intelligent Techniques and Soft Computing, pp. 556–565 (1999)

    Google Scholar 

  5. Borgelt, C., Kruse, R.: Efficient maximum projection of database-induced multivariate possibility distributions. In: Proc. 7th Fuzz-IEEE Conf., pp. 663–668 (1998)

    Google Scholar 

  6. Dubois, D., Prade, H.: Possibility theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility theory: Qualitative and quantitative aspects. Handbook on Defeasible Reasoning and Uncertainty Manag. Syst. 1, 169–226 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Dubois, D., Prade, H.: Possibility theory in information fusion. In: Proceeding of the 3rd International Conference on Information Fusion, pp. 6–19 (2000)

    Google Scholar 

  9. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R. (ed.) Fuzzy Logic, pp. 103–112. D. Reidel, Dordrechtz (1993)

    Chapter  Google Scholar 

  10. Hüllermeier, E.: Fuzzy methods in machine learning and data mining:status and prospects. Fuzzy Sets and Systems, 387–406 (2005)

    Google Scholar 

  11. Hüllermeier, E.: Possibilistic instance-based learning. Art. Intell., 335–383 (2003)

    Google Scholar 

  12. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Relia. Comp. 10, 273–297 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jenhani, I., Ben Amor, N., Elouedi, Z.: Decision trees as possibilistic classifiers. Inter. J. of Approximate Reasoning 48(3), 784–807 (2008)

    Article  MATH  Google Scholar 

  14. Jenhani, I., Benferhat, S., Elouedi, Z.: Learning and evaluating possibilistic de-cision trees using informat. affinity. Int. J. Comp. Sys. Sci. Eng. 4, 206–212 (2010)

    Google Scholar 

  15. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 1–30 (2006)

    Google Scholar 

  16. Mertz, J., Murphy, P.M.: Uci repository of machine learning databases, ftp://ftp.ics.uci.edu/pub/machine-learning-databases

  17. Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: From bayesian classifiers to possibilistic classifiers for numerical data. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 112–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ben Amor, N., Mellouli, K., Benferhat, S., Dubois, D., Prade, H.: A theoretical framework for possibilistic independence in a weakly ordered setting. Int. J.of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 117–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ben Amor, N., Benferhat, S., Elouedi, Z.: Qualitative classification and evaluation in possibilistic decision trees. In: In FUZZ-IEEE 2004, vol. 1, pp. 653–657 (2004)

    Google Scholar 

  20. Xia, Y., Qin, B., Li, F.: A Bayesian classifier for uncertain data. In: The 25th ACM Symposium on Applied Computing, SAC (2010)

    Google Scholar 

  21. Benferhat, S., Tabia, K.: An Efficient Algorithm for Naive Possibilistic Classifiers with Uncertain Inputs. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 63–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Zadeh, L.A.: Fuzzy sets. Inform. and Control 8 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bounhas, M., Prade, H., Serrurier, M., Mellouli, K. (2011). Possibilistic Classifiers for Uncertain Numerical Data. In: Liu, W. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2011. Lecture Notes in Computer Science(), vol 6717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22152-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22152-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22151-4

  • Online ISBN: 978-3-642-22152-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics