Abstract
In many real-world problems, input data may be pervaded with uncertainty. Naive possibilistic classifiers have been proposed as a counterpart to Bayesian classifiers to deal with classification tasks in presence of uncertainty. Following this line here, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. We consider two types of uncertainty: i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an extension principle-based algorithm to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haouari, B., Ben Amor, N., Elouadi, Z., Mellouli, K.: Naïve possibilistic network classifiers. Fuzzy Set and Systems 160(22), 3224–3238 (2009)
Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A rule-based classification algorithm for uncertain data. In: IEEE International Conference on Data Engineering (2009)
Hüllermeier, E., Beringer, J.: Case-based learning in a bipolar possibilistic framework. Inter. J. of Intelligent Systems, 1119–1134 (2008)
Borgelt, C., Gebhardt, J.: A naïve Bayes style possibilistic classifier. In: Proc. 7th Europ. Cong. on Intelligent Techniques and Soft Computing, pp. 556–565 (1999)
Borgelt, C., Kruse, R.: Efficient maximum projection of database-induced multivariate possibility distributions. In: Proc. 7th Fuzz-IEEE Conf., pp. 663–668 (1998)
Dubois, D., Prade, H.: Possibility theory. Plenum Press, New York (1988)
Dubois, D., Prade, H.: Possibility theory: Qualitative and quantitative aspects. Handbook on Defeasible Reasoning and Uncertainty Manag. Syst. 1, 169–226 (1998)
Dubois, D., Prade, H.: Possibility theory in information fusion. In: Proceeding of the 3rd International Conference on Information Fusion, pp. 6–19 (2000)
Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R. (ed.) Fuzzy Logic, pp. 103–112. D. Reidel, Dordrechtz (1993)
Hüllermeier, E.: Fuzzy methods in machine learning and data mining:status and prospects. Fuzzy Sets and Systems, 387–406 (2005)
Hüllermeier, E.: Possibilistic instance-based learning. Art. Intell., 335–383 (2003)
Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Relia. Comp. 10, 273–297 (2004)
Jenhani, I., Ben Amor, N., Elouedi, Z.: Decision trees as possibilistic classifiers. Inter. J. of Approximate Reasoning 48(3), 784–807 (2008)
Jenhani, I., Benferhat, S., Elouedi, Z.: Learning and evaluating possibilistic de-cision trees using informat. affinity. Int. J. Comp. Sys. Sci. Eng. 4, 206–212 (2010)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 1–30 (2006)
Mertz, J., Murphy, P.M.: Uci repository of machine learning databases, ftp://ftp.ics.uci.edu/pub/machine-learning-databases
Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: From bayesian classifiers to possibilistic classifiers for numerical data. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 112–125. Springer, Heidelberg (2010)
Ben Amor, N., Mellouli, K., Benferhat, S., Dubois, D., Prade, H.: A theoretical framework for possibilistic independence in a weakly ordered setting. Int. J.of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 117–155 (2002)
Ben Amor, N., Benferhat, S., Elouedi, Z.: Qualitative classification and evaluation in possibilistic decision trees. In: In FUZZ-IEEE 2004, vol. 1, pp. 653–657 (2004)
Xia, Y., Qin, B., Li, F.: A Bayesian classifier for uncertain data. In: The 25th ACM Symposium on Applied Computing, SAC (2010)
Benferhat, S., Tabia, K.: An Efficient Algorithm for Naive Possibilistic Classifiers with Uncertain Inputs. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 63–77. Springer, Heidelberg (2008)
Zadeh, L.A.: Fuzzy sets. Inform. and Control 8 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bounhas, M., Prade, H., Serrurier, M., Mellouli, K. (2011). Possibilistic Classifiers for Uncertain Numerical Data. In: Liu, W. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2011. Lecture Notes in Computer Science(), vol 6717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22152-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-22152-1_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22151-4
Online ISBN: 978-3-642-22152-1
eBook Packages: Computer ScienceComputer Science (R0)