[go: up one dir, main page]

Skip to main content

Construction of Pseudo-triangulation by Incremental Insertion

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

  • 1360 Accesses

Abstract

A pseudo-triangulation is a planar subdivision into pseudo-triangles - polygons with three convex vertices, used mainly in motion planning problems in robotics. As it is a rather new concept, not too many algorithms to construct it exist. In this paper, we propose an on-line version of incremental insertion, with generalized flips to improve the shape of pseudo-triangles. This algorithmic paradigm is often used for Delaunay triangulations, but for pseudo-triangulations it has been used only in an off-line version (for sorted input points). We also experimented with several optimization criteria for the flips and show their influence on the shape of pseudo-triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Aurenhammer, F., Krasser, H., Speckmann, B.: Convexity minimizes pseudo-triangulations. In: Proceedings of the 14th Canadian Conference on Computational Geometry, pp. 158–162 (2002)

    Google Scholar 

  2. Aichholzer, O., Rote, G., Speckmann, B., Streinu, I.: The Zigzag Path of a Pseudo-Triangulation. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 377–388. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudo-triangulations from surfaces and novel type of edge flip. SIAM Journal on Computing 32, 1621–1653 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pseudo-triangulations with greedy flip algorithm. SIAM Journal on Computing 36, 721–739 (2007)

    Article  MATH  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kettner, L., Kirkpatrick, D., Mantler, A., Snoeyink, J., Speckmann, B., Takeuchi, F.: Tight degree bounds for pseudo-triangulations of points. Computational Geometry - Theory and Applications 25(1-2), 3–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. In: Proceedings of the 16th ACM Symposium on Computational Geometry, pp. 322–330 (2000)

    Google Scholar 

  8. Kirkpatrick, D., Speckmann, B.: Separation sensitive kinetic separation structures for convex polygons. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 222–236. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Kolingerová, I., Trčka, J., Žalik, B.: The stochastic walk algorithms for point location in pseudo-triangulations (2011) (manuscript)

    Google Scholar 

  10. Műcke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 274–283 (1996)

    Google Scholar 

  11. Pocchiola, M., Vertger, G.: Computing the visibility graph via pseudo-triangulations. In: Proceedings of the 11th Annual ACM Symposium on Computational Geometry, pp. 248–257 (1995)

    Google Scholar 

  12. Pocchiola, M., Vertger, G.: The visibility complex. Proceedings of the International Journal of Computational Geometry and Applications, 279–308 (1996)

    Google Scholar 

  13. Pocchiola, M., Vertger, G.: Pseudo-triangulations: theory and applications. In: Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pp. 291–300 (1996)

    Google Scholar 

  14. Randall, D., Rote, G., Santos, F., Snoeyink, J.: Counting triangulations and pseudo-triangulations of wheels. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 149–152 (2001)

    Google Scholar 

  15. Rote, G., Wang, C.A., Wang, L., Xu, Y.: On constrained minimum pseudotriangulations. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 445–454. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Speckmann, B., Tóth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. In: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 109–118 (2003)

    Google Scholar 

  17. Streinu, I.: A combinatorical approach to planar non-colliding robot arm motion planning. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pp. 443–453 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolingerová, I., Trčka, J., Hobza, L. (2011). Construction of Pseudo-triangulation by Incremental Insertion. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics