Abstract
This paper deals with database preference queries involving fuzzy conditions which do not explicitly refer to an attribute from the database, but whose meaning is rather inferred from a set of rules. The approach we propose, which is based on some concepts from the fuzzy control domain (aggregation and defuzzification, in particular), significantly increases the expressivity of fuzzy query languages inasmuch as it allows for new types of predicates. An implementation strategy involving a coupling between a DBMS and a fuzzy reasoner is outlined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hadjali, A., Kaci, S., Prade, H.: Database preferences queries – a possibilistic logic approach with symbolic priorities. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 291–310. Springer, Heidelberg (2008)
Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: mapping strategies and performance evaluation. ACM Trans. on Database Systems 27, 153–187 (2002)
Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. on Fuzzy Systems 3(1), 1–17 (1995)
Kießling, W., Köstler, G.: Preference SQL — Design, implementation, experiences. In: Proc. of VLDB 2002, pp. 990–1001 (2002)
Bőrzsőnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE 2001, pp. 421–430 (2001)
Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28(4), 427–466 (2003)
Koyuncu, M.: Fuzzy querying in intelligent information systems. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 536–547. Springer, Heidelberg (2009)
Hadjali, A., Mokhtari, A., Pivert, O.: A fuzzy-rule-based approach to contextual preference queries. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 532–541. Springer, Heidelberg (2010)
Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Dubois, D., Prade, H.: Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets, vol. 7. Kluwer Academic Pub., Netherlands (2000)
Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of Fuzzy Sets Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)
Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. Fuzzy Sets and Systems 40(1), 143–202 (1991)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)
Michels, K.: TS control — The link between fuzzy control and classical control theory. In: de Bruin, M., Mache, D., Szabados, J. (eds.) Trends and Applications in Constructive Approximation, pp. 181–194. Birkhäuser Verlag, Basel (2005)
Bosc, P., Pivert, O.: SQLf query functionality on top of a regular relational database management system. In: Pons, O., Vila, M., Kacprzyk, J. (eds.) Knowledge Management in Fuzzy Databases, pp. 171–190. Physica-Verlag, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pivert, O., Hadjali, A., Smits, G. (2011). On Database Queries Involving Inferred Fuzzy Predicates. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_63
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)