[go: up one dir, main page]

Skip to main content

On Database Queries Involving Inferred Fuzzy Predicates

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

Abstract

This paper deals with database preference queries involving fuzzy conditions which do not explicitly refer to an attribute from the database, but whose meaning is rather inferred from a set of rules. The approach we propose, which is based on some concepts from the fuzzy control domain (aggregation and defuzzification, in particular), significantly increases the expressivity of fuzzy query languages inasmuch as it allows for new types of predicates. An implementation strategy involving a coupling between a DBMS and a fuzzy reasoner is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hadjali, A., Kaci, S., Prade, H.: Database preferences queries – a possibilistic logic approach with symbolic priorities. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 291–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: mapping strategies and performance evaluation. ACM Trans. on Database Systems 27, 153–187 (2002)

    Article  Google Scholar 

  3. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. on Fuzzy Systems 3(1), 1–17 (1995)

    Article  Google Scholar 

  4. Kießling, W., Köstler, G.: Preference SQL — Design, implementation, experiences. In: Proc. of VLDB 2002, pp. 990–1001 (2002)

    Google Scholar 

  5. Bőrzsőnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE 2001, pp. 421–430 (2001)

    Google Scholar 

  6. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28(4), 427–466 (2003)

    Article  MathSciNet  Google Scholar 

  7. Koyuncu, M.: Fuzzy querying in intelligent information systems. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 536–547. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Hadjali, A., Mokhtari, A., Pivert, O.: A fuzzy-rule-based approach to contextual preference queries. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 532–541. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois, D., Prade, H.: Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets, vol. 7. Kluwer Academic Pub., Netherlands (2000)

    MATH  Google Scholar 

  11. Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of Fuzzy Sets Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  12. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. Fuzzy Sets and Systems 40(1), 143–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  14. Michels, K.: TS control — The link between fuzzy control and classical control theory. In: de Bruin, M., Mache, D., Szabados, J. (eds.) Trends and Applications in Constructive Approximation, pp. 181–194. Birkhäuser Verlag, Basel (2005)

    Chapter  Google Scholar 

  15. Bosc, P., Pivert, O.: SQLf query functionality on top of a regular relational database management system. In: Pons, O., Vila, M., Kacprzyk, J. (eds.) Knowledge Management in Fuzzy Databases, pp. 171–190. Physica-Verlag, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pivert, O., Hadjali, A., Smits, G. (2011). On Database Queries Involving Inferred Fuzzy Predicates. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics