Abstract
The availability of expression quantitative trait loci (eQTL) data can help understanding the genetic basis of variation in gene expression. However, it has proven difficult to accurately predict functional genetic changes due to low statistical power. To address this challenge, we developed a novel computational approach for combining eQTL data with complementary regulatory network to identify modules of genes, their underlying genetic polymorphism and their shared regulatory proteins activity. The resulting eQTL model implicates novel central protein complexes that share not only a regulatory protein but also an underlying genetic variation. Our method manifests higher sensitivity than prior computational efforts.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gat-Viks, I., Meller, R., Kupiec, M., Shamir, R. (2011). Understanding Gene Sequence Variation in the Context of Transcription Regulation in Yeast. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-20036-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20035-9
Online ISBN: 978-3-642-20036-6
eBook Packages: Computer ScienceComputer Science (R0)