[go: up one dir, main page]

Skip to main content

Optimization of Combinatorial Mutagenesis

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

  • 1299 Accesses

Abstract

Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (stability, activity, immunogenicity, etc.). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries—a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and novelty as well as library construction technique, and identify optimal libraries for experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cadwell, R.C., Joyce, G.F.: Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992)

    Article  Google Scholar 

  2. Chen, C.Y., Georgiev, I., Anderson, A.C., Donald, B.R.: Computational structure-based redesign of enzyme activity. PNAS 106, 3764–3769 (2009)

    Article  Google Scholar 

  3. Fox, R., et al.: Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344 (2007)

    Article  Google Scholar 

  4. Fukuda, H., et al.: Reconstitution of the isobitene-forming reaction catalyzed by cytochrome p450 and p450 reductase from Rhodotorula minuta: Decarboxylation with the formation of isobutene. Biochem. Bioph. Res. Co. 201, 516–522 (1994)

    Article  Google Scholar 

  5. Griswold, K.E., Aiyappan, N.S., Iverson, B.L., Georgiou, G.: The evolution of catalytic efficiency and substrate promiscuity in human theta class 1-1 glutathione transferase. J. Mol. Biol. 364, 400–410 (2006)

    Article  Google Scholar 

  6. Harding, F.A., et al.: A beta-lactamase with reduced immunogenicity for the targeted delivery of chemotherapeutics using antibody-directed enzyme prodrug therapy. Mol. Cancer. Ther. 4, 1791–1800 (2005)

    Article  Google Scholar 

  7. He, L., Friedman, A.M., Bailey-Kellogg, C.: Pareto optimal protein design. In: 3dsig: Structural Bioinformatics and Computational Biophysics, pp. 69–70 (2010)

    Google Scholar 

  8. Herman, A., Tawfik, D.S.: Incorporating synthetic oligonucleotides via gene reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng. Des. Sel. 20, 219–226 (2007)

    Article  Google Scholar 

  9. Hiraga, K., Arnold, F.: General method for sequence-independent site-directed chimeragenesis. J. Mol. Biol. 330, 287–296 (2003)

    Article  Google Scholar 

  10. Jackel, C., Bloom, J.D., Kast, P., Arnold, F.H., Hilvert, D.: Consensus protein design without phylogenetic bias. J. Mol. Biol. 399, 541–546 (2010)

    Article  Google Scholar 

  11. Jiang, L., et al.: De novo computational design of retro-aldol enzymes. Science 319(5868), 1387–1391 (2008)

    Article  Google Scholar 

  12. la Grange, D.C., den Haan, R., van Zyl, W.H.: Engineering cellulolytic ability into bioprocessing organisms. Appl. Microbiol. Biotechnol. 87, 1195–1208 (2010)

    Article  Google Scholar 

  13. Levin, A.M., Murase, K., Jackson, P.J., Flinspach, M.L., Poulos, T.L., Weiss, G.A.: Double barrel shotgun scanning of the Caveolin-1 scaffolding domain. ACS Chem. Biol. 2, 493–500 (2007)

    Article  Google Scholar 

  14. Marco, A.M., Daugherty, P.S.: Automated design of degenerate codon libraries. Protein Eng. Des. Sel. 18, 559–561 (2005)

    Article  Google Scholar 

  15. Meyer, M., Hochrein, L., Arnold, F.: Structure-guided SCHEMA recombination of distantly related beta-lactamases. Protein Eng. Des. Sel. 19, 563–570 (2006)

    Article  Google Scholar 

  16. Nelson, A., Reichert, J.M.: Development trends for therapeutic antibody fragments. Nat. Biotech. 27, 331–337 (2009)

    Article  Google Scholar 

  17. Otey, C., Landwehr, M., Endelman, J., Hiraga, K., Bloom, J., Arnold, F.: Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol. 4, e112 (2006)

    Article  Google Scholar 

  18. Pantazes, R., Saraf, M., Maranas, C.: Optimal protein library design using recombination or point mutations based on sequence-based scoring functions. Protein Eng. Des. Sel. 20, 361–373 (2007)

    Article  Google Scholar 

  19. Parker, A.S., Griswold, K., Bailey-Kellogg, C.: Optimization of therapeutic proteins to delete T-cell epitopes while maintaining beneficial residue interactions. In: Proc. CSB, pp. 100–113 (2010)

    Google Scholar 

  20. Parker, A.S., Zheng, W., Griswold, K., Bailey-Kellogg, C.: Optimization algorithms for functional deimmunization of therapeutic proteins. BMC Bioinf. 11, 180 (2010)

    Article  Google Scholar 

  21. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)

    Article  Google Scholar 

  22. Reetz, M.T., Carballira, J.: Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protocols 2, 891–903 (2007)

    Article  Google Scholar 

  23. Reetz, M.T., Kahakeaw, D., Lohmer, R.: Addressing the numbers problem in directed evolution. ChemBioChem. 9, 1797–1804 (2008)

    Article  Google Scholar 

  24. Russ, W.P., Lowery, D.M., Mishra, P., Yaffee, M.B., Ranganathan, R.: Natural-like function in artificial WW domains. Nature 437, 579–583 (2005)

    Article  Google Scholar 

  25. Saraf, M.C., Gupta, A., Maranas, C.D.: Design of combinatorial protein libraries of optimal size. Proteins 60, 769–777 (2005)

    Article  Google Scholar 

  26. Saraf, M.C., Horswill, A.R., Benkovic, S.J., Maranas, C.D.: FamClash: A method for ranking the activity of engineered enzymes. PNAS 12, 4142–4147 (2004)

    Article  Google Scholar 

  27. Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardner, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)

    Article  Google Scholar 

  28. Stemmer, W.P.C.: DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. PNAS 91, 10747–10751 (1994)

    Article  Google Scholar 

  29. Treynor, T., Vizcarra, C., Nedelcu, D., Mayo, S.: Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. PNAS 104, 48–53 (2007)

    Article  Google Scholar 

  30. Voigt, C.A., Martinez, C., Wang, Z.G., Mayo, S.L., Arnold, F.H.: Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002)

    Google Scholar 

  31. Ye, X., Friedman, A.M., Bailey-Kellogg, C.: Hypergraph model of multi-residue interactions in proteins: Sequentially–constrained partitioning algorithms for optimization of site-directed protein recombination. J. Comput. Biol. 14, 777–790 (2007); In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 15–29. Springer, Heidelberg (2006)

    Google Scholar 

  32. Zhang, J., Campbell, R., Ting, A., Tsien, R.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol. 3, 906–918 (2002)

    Article  Google Scholar 

  33. Zheng, W., Friedman, A., Bailey-Kellogg, C.: Algorithms for joint optimization of stability and diversity in planning combinatorial libraries of chimeric proteins. J. Comput. Biol. 16, 1151–1168 (2009); In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 300–314. Springer, Heidelberg (2008)

    Google Scholar 

  34. Zheng, W., Griswold, K., Bailey-Kellogg, C.: Protein fragment swapping: A method for asymmetric, selective site-directed recombination. J. Comput. Biol. 17, 459–475 (2010); In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 321–338. Springer, Heidelberg (2009)

    Google Scholar 

  35. Zheng, W., Ye, X., Friedman, A., Bailey-Kellogg, C.: Algorithms for selecting breakpoint locations to optimize diversity in protein engineering by site-directed protein recombination. In: Proc. CSB, pp. 31–40 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, A.S., Griswold, K.E., Bailey-Kellogg, C. (2011). Optimization of Combinatorial Mutagenesis. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics