Abstract
An artificial macromolecule (foldamer) was designed as a novel nanomaterial with the backbone of phosphodiester and the side chain of functional molecules and nucleobases. The functional molecules tethered on D-threoninol and the nucleosides on D-ribose can be lined up with any sequence and ratio by using standard phosphoramidite chemistry. The nucleobases that form Watson-Crick base pairs provide the sequence recognition which is required for constructing complicate nanostructures. The multiple functional molecules give applicable and advanced functions such as photoresponsiveness when azobenzenes were used. Unexpectedly, a stable double helix was formed even in the case that the ratio of azobenzene molecules and base pairs was as high as 2:1. More interestingly, this artificial duplex showed high sequence specificity: the stability decreased greatly when a mismatched base pair was present. Furthermore, the formation and dissociation of the constructed artificial duplex were reversibly and completely modulated with light irradiation. By using this new nanomaterial, a variety of functional nanostructures and nanodevices are promising to be designed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Seeman, N.C., Lukeman, P.S.: Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale. Rep. Prog. Phys. 68, 237–270 (2005)
Fujita, M., Tominaga, M., Hori, A., Therrien, B.: Coordination Assemblies from a Pd(II)-Cornered Square Complex. Acc. Chem. Res. 38, 369–378 (2005)
Zheng, J.P., Birktoft, J.J., Chen, Y., Wang, T., Sha, R.J., Constantinou, P.E., Ginell, S.L., Mao, C.D., Seeman, N.C.: From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal. Nature 461, 74–77 (2001)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and Autonomous Computing Machine Made of Biomolecules. Nature 414, 430–434 (2001)
Hecht, S., Huc, I.: Foldamers: Structure, Properties, and Applications. Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim (2007)
Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic Molecular Motors and Mechanical Machines. Angew. Chem., Int. Ed. 46, 72–191 (2007)
Hamdi, M., Ferreira, A.: DNA nanorobotics. Microelectronics J. 39, 1051–1059 (2008)
Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-Kilobase Single-Stranded DNA that Folds into a Nanoscale Octahedron. Nature 427, 618–621 (2004)
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382, 607–609 (1996)
Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 323, 112–116 (2009)
He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.D.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008)
Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–77 (2009)
Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-Fuelled Molecular Machine Made of DNA. Nature 406, 605–608 (2000)
Shin, J.S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)
Seeman, N.C.: From Genes to Machines: DNA Nanomechanical Devices. Trends. Biochem. Sci. 30, 119–125 (2005)
Beissenhirtz, M.K., Willner, I.: DNA-Based Machines. Org. Biomol. Chem. 4, 3392–3401 (2006)
Beyer, S., Simmel, F.C.: A Modular DNA Signal Translator for the Controlled Release of a Protein by an Aptamer. Nucleic Acid Res. 34, 1581–1587 (2006)
Kutyavin, I.V., Afonina, I.A., Mills, A., Gorn, V.V., Lukhtanov, E.A., Belousov, E.S., Singer, M.J., Walburger, D.K., Lokhov, S.G., Gall, A.A., Dempcy, R., Reed, M.W., Meyer, R.B., Hedgpeth, J.: 3’-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28, 655–661 (2000)
Wang, K., Tang, Z., Yang, C.J., Kim, Y., Fang, X., Li, W., Wu, Y., Medley, C.D., Cao, Z., Li, J., Colon, P., Lin, H., Tan, W.: Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed. 47, 2–17 (2008)
Kelley, S.O., Boon, E.M., Barton, J.K., Jackson, N.M., Hill, M.G.: Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (2000)
Mayer, G., Heckel, A.: Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Eng. 45, 4900–4921 (2006)
Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama, M.: Synthesis of Azobenzene-Tethered DNA for Reversible Photo-Regulation of DNA Functions: Hybridization and Transcription. Nat. Protocols 2, 203–212 (2007)
Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: A DNA Nanomachine Powered by Light Irradiation. ChemBioChem. 9, 702–705 (2008)
Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: Construction of Photon-Fueled DNA Nanomachines by Tethering Azobenzenes as Engines. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 21–32. Springer, Heidelberg (2009)
Zhou, M.G., Liang, X.G., Mochizuki, T., Asanuma, H.: A light-driven DNA nanomachine for efficiently photoswitching RNA digestion. Angew. Chem. Int. Ed. 49, 2167–2170 (2010)
Asanuma, H., Shirasuka, K., Takarada, T., Kashida, H., Komiyama, M.: DNA-Dye Conjugates for Controllable H* Aggregation. J. Am. Chem. Soc. 125, 2217–2223 (2003)
Kashida, H., Fujii, T., Asanuma, H.: Threoninol as a Scaffold of Dyes (Threoninol-nucleotide) and Their Stable Interstrand Clustering in Duplexes. Org. Biomol. Chem. 6, 2892–2899 (2008)
Fujii, T., Kashida, H., Asanuma, H.: Analysis of Coherent Heteroclustering of Different Dyes by Use of Threoninol-Nucleotides for Comparison with the Molecular Exciton Theory. Chem. Eur. J. 15, 10092–10102 (2009)
Liang, X.G., Mochizuki, T., Asanuma, H.: A Supra-Photoswitch Involving Sandwiched DNA Base Pairs and Azobenzenes for Light-Driven Nanostructures and Nanodevices. Small 5, 1761–1768 (2009)
Liang, X.G., Nishioka, H., Mochizuki, T., Asanuma, H.: An interstrand-wedged duplex composed of alternating DNA base pairs and covalently attached intercalators. J. Mater. Chem. 20, 575–581 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liang, X., Mochizuki, T., Fujii, T., Kashida, H., Asanuma, H. (2011). Design of a Functional Nanomaterial with Recognition Ability for Constructing Light-Driven Nanodevices. In: Sakakibara, Y., Mi, Y. (eds) DNA Computing and Molecular Programming. DNA 2010. Lecture Notes in Computer Science, vol 6518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18305-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-18305-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18304-1
Online ISBN: 978-3-642-18305-8
eBook Packages: Computer ScienceComputer Science (R0)