[go: up one dir, main page]

Skip to main content

Design of a Functional Nanomaterial with Recognition Ability for Constructing Light-Driven Nanodevices

  • Conference paper
DNA Computing and Molecular Programming (DNA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6518))

Included in the following conference series:

  • 1225 Accesses

Abstract

An artificial macromolecule (foldamer) was designed as a novel nanomaterial with the backbone of phosphodiester and the side chain of functional molecules and nucleobases. The functional molecules tethered on D-threoninol and the nucleosides on D-ribose can be lined up with any sequence and ratio by using standard phosphoramidite chemistry. The nucleobases that form Watson-Crick base pairs provide the sequence recognition which is required for constructing complicate nanostructures. The multiple functional molecules give applicable and advanced functions such as photoresponsiveness when azobenzenes were used. Unexpectedly, a stable double helix was formed even in the case that the ratio of azobenzene molecules and base pairs was as high as 2:1. More interestingly, this artificial duplex showed high sequence specificity: the stability decreased greatly when a mismatched base pair was present. Furthermore, the formation and dissociation of the constructed artificial duplex were reversibly and completely modulated with light irradiation. By using this new nanomaterial, a variety of functional nanostructures and nanodevices are promising to be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Seeman, N.C., Lukeman, P.S.: Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale. Rep. Prog. Phys. 68, 237–270 (2005)

    Article  Google Scholar 

  2. Fujita, M., Tominaga, M., Hori, A., Therrien, B.: Coordination Assemblies from a Pd(II)-Cornered Square Complex. Acc. Chem. Res. 38, 369–378 (2005)

    Article  Google Scholar 

  3. Zheng, J.P., Birktoft, J.J., Chen, Y., Wang, T., Sha, R.J., Constantinou, P.E., Ginell, S.L., Mao, C.D., Seeman, N.C.: From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal. Nature 461, 74–77 (2001)

    Article  Google Scholar 

  4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and Autonomous Computing Machine Made of Biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  5. Hecht, S., Huc, I.: Foldamers: Structure, Properties, and Applications. Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim (2007)

    Book  Google Scholar 

  6. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic Molecular Motors and Mechanical Machines. Angew. Chem., Int. Ed. 46, 72–191 (2007)

    Article  Google Scholar 

  7. Hamdi, M., Ferreira, A.: DNA nanorobotics. Microelectronics J. 39, 1051–1059 (2008)

    Article  Google Scholar 

  8. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-Kilobase Single-Stranded DNA that Folds into a Nanoscale Octahedron. Nature 427, 618–621 (2004)

    Article  Google Scholar 

  9. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382, 607–609 (1996)

    Article  Google Scholar 

  10. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 323, 112–116 (2009)

    Article  Google Scholar 

  11. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.D.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008)

    Article  Google Scholar 

  12. Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–77 (2009)

    Article  Google Scholar 

  13. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-Fuelled Molecular Machine Made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  14. Shin, J.S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  15. Seeman, N.C.: From Genes to Machines: DNA Nanomechanical Devices. Trends. Biochem. Sci. 30, 119–125 (2005)

    Article  Google Scholar 

  16. Beissenhirtz, M.K., Willner, I.: DNA-Based Machines. Org. Biomol. Chem. 4, 3392–3401 (2006)

    Article  Google Scholar 

  17. Beyer, S., Simmel, F.C.: A Modular DNA Signal Translator for the Controlled Release of a Protein by an Aptamer. Nucleic Acid Res. 34, 1581–1587 (2006)

    Article  Google Scholar 

  18. Kutyavin, I.V., Afonina, I.A., Mills, A., Gorn, V.V., Lukhtanov, E.A., Belousov, E.S., Singer, M.J., Walburger, D.K., Lokhov, S.G., Gall, A.A., Dempcy, R., Reed, M.W., Meyer, R.B., Hedgpeth, J.: 3’-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28, 655–661 (2000)

    Article  Google Scholar 

  19. Wang, K., Tang, Z., Yang, C.J., Kim, Y., Fang, X., Li, W., Wu, Y., Medley, C.D., Cao, Z., Li, J., Colon, P., Lin, H., Tan, W.: Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed. 47, 2–17 (2008)

    Article  Google Scholar 

  20. Kelley, S.O., Boon, E.M., Barton, J.K., Jackson, N.M., Hill, M.G.: Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (2000)

    Article  Google Scholar 

  21. Mayer, G., Heckel, A.: Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Eng. 45, 4900–4921 (2006)

    Article  Google Scholar 

  22. Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama, M.: Synthesis of Azobenzene-Tethered DNA for Reversible Photo-Regulation of DNA Functions: Hybridization and Transcription. Nat. Protocols 2, 203–212 (2007)

    Article  Google Scholar 

  23. Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: A DNA Nanomachine Powered by Light Irradiation. ChemBioChem. 9, 702–705 (2008)

    Article  Google Scholar 

  24. Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: Construction of Photon-Fueled DNA Nanomachines by Tethering Azobenzenes as Engines. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 21–32. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Zhou, M.G., Liang, X.G., Mochizuki, T., Asanuma, H.: A light-driven DNA nanomachine for efficiently photoswitching RNA digestion. Angew. Chem. Int. Ed. 49, 2167–2170 (2010)

    Article  Google Scholar 

  26. Asanuma, H., Shirasuka, K., Takarada, T., Kashida, H., Komiyama, M.: DNA-Dye Conjugates for Controllable H* Aggregation. J. Am. Chem. Soc. 125, 2217–2223 (2003)

    Article  Google Scholar 

  27. Kashida, H., Fujii, T., Asanuma, H.: Threoninol as a Scaffold of Dyes (Threoninol-nucleotide) and Their Stable Interstrand Clustering in Duplexes. Org. Biomol. Chem. 6, 2892–2899 (2008)

    Article  Google Scholar 

  28. Fujii, T., Kashida, H., Asanuma, H.: Analysis of Coherent Heteroclustering of Different Dyes by Use of Threoninol-Nucleotides for Comparison with the Molecular Exciton Theory. Chem. Eur. J. 15, 10092–10102 (2009)

    Article  Google Scholar 

  29. Liang, X.G., Mochizuki, T., Asanuma, H.: A Supra-Photoswitch Involving Sandwiched DNA Base Pairs and Azobenzenes for Light-Driven Nanostructures and Nanodevices. Small 5, 1761–1768 (2009)

    Article  Google Scholar 

  30. Liang, X.G., Nishioka, H., Mochizuki, T., Asanuma, H.: An interstrand-wedged duplex composed of alternating DNA base pairs and covalently attached intercalators. J. Mater. Chem. 20, 575–581 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, X., Mochizuki, T., Fujii, T., Kashida, H., Asanuma, H. (2011). Design of a Functional Nanomaterial with Recognition Ability for Constructing Light-Driven Nanodevices. In: Sakakibara, Y., Mi, Y. (eds) DNA Computing and Molecular Programming. DNA 2010. Lecture Notes in Computer Science, vol 6518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18305-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18305-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18304-1

  • Online ISBN: 978-3-642-18305-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics