Abstract
Clustering of gene expression is a useful exploratory technique for gene expression dataset as it groups similar objects together and identify potentially meaningful relationships between the objects. However, there are several issues arise for instance data intensive and redundancy in the cluster. Therefore, the new computational framework is needed in order to handle these issues. The results showed that the proposed computational framework achieved better results compared with other methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome-wide Expression Patterns. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 14863–14868. The National Academy of Sciences, Washington (1998)
Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting Gene Function Using Hierarchical Multi-Label Decision Tree Ensembles. Bioinformatics 11(2) (2010)
Lobo, I.: Pleiotropy: One Gene Can Affect Multiple Traits. Nature Education 1(1) (2008)
Bezdek, J.C.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Tamayo, P., Solni, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting Patterns Of Gene Expression With Self-Organizing Maps: Methods And Application To Hematopoietic Differentiation. In: Proceedings of The National Academy of Sciences of The United States of America, pp. 2907–2912. The National Academy of Sciences, Washington (1999)
Alter, O., Brown, P.O., Bostein, D.: Singular Value Decomposition For Genome-Wide Expression Data Processing And Modeling. In: Proceedings Of The National Academy Of Sciences Of The United States Of America, pp. 10101–10106. The National Academy Of Sciences, Washington (2000)
Bezdek, J.C.: Fuzzy Mathematic. In: Pattern Classification. Cornell University, Ithaca (1973)
Dunn, J.C.: A Fuzzy Relative Of The ISODATA Process And Its Use In Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)
Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic Expression Programs In The Response Of Yeast Cells To Environmental Changes. Molecular Biology of the Cell 11(12), 4241–4257 (2000)
CLUSTER Software, http://rana.lbl.gov/EisenSoftware.htm
Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: Bicat: A Biclustering Analysis Toolbox. Bioinformatics 22(10), 1282–1283 (2006)
Gibbons, F., Roth, F.: Judging The Quality Of Gene Expression-Based Clustering Methods Using Gene Annotation. Genome Research 12, 1574–1581 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kasim, S., Deris, S., Othman, R.M. (2010). A New Computational Framework for Gene Expression Clustering. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-17316-5_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17315-8
Online ISBN: 978-3-642-17316-5
eBook Packages: Computer ScienceComputer Science (R0)