[go: up one dir, main page]

Skip to main content

A New Computational Framework for Gene Expression Clustering

  • Conference paper
Advanced Data Mining and Applications (ADMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6440))

Included in the following conference series:

Abstract

Clustering of gene expression is a useful exploratory technique for gene expression dataset as it groups similar objects together and identify potentially meaningful relationships between the objects. However, there are several issues arise for instance data intensive and redundancy in the cluster. Therefore, the new computational framework is needed in order to handle these issues. The results showed that the proposed computational framework achieved better results compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome-wide Expression Patterns. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 14863–14868. The National Academy of Sciences, Washington (1998)

    Google Scholar 

  2. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting Gene Function Using Hierarchical Multi-Label Decision Tree Ensembles. Bioinformatics 11(2) (2010)

    Google Scholar 

  3. Lobo, I.: Pleiotropy: One Gene Can Affect Multiple Traits. Nature Education 1(1) (2008)

    Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  5. Tamayo, P., Solni, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting Patterns Of Gene Expression With Self-Organizing Maps: Methods And Application To Hematopoietic Differentiation. In: Proceedings of The National Academy of Sciences of The United States of America, pp. 2907–2912. The National Academy of Sciences, Washington (1999)

    Google Scholar 

  6. Alter, O., Brown, P.O., Bostein, D.: Singular Value Decomposition For Genome-Wide Expression Data Processing And Modeling. In: Proceedings Of The National Academy Of Sciences Of The United States Of America, pp. 10101–10106. The National Academy Of Sciences, Washington (2000)

    Google Scholar 

  7. Bezdek, J.C.: Fuzzy Mathematic. In: Pattern Classification. Cornell University, Ithaca (1973)

    Google Scholar 

  8. Dunn, J.C.: A Fuzzy Relative Of The ISODATA Process And Its Use In Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic Expression Programs In The Response Of Yeast Cells To Environmental Changes. Molecular Biology of the Cell 11(12), 4241–4257 (2000)

    Article  Google Scholar 

  10. CLUSTER Software, http://rana.lbl.gov/EisenSoftware.htm

  11. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: Bicat: A Biclustering Analysis Toolbox. Bioinformatics 22(10), 1282–1283 (2006)

    Article  Google Scholar 

  12. Gibbons, F., Roth, F.: Judging The Quality Of Gene Expression-Based Clustering Methods Using Gene Annotation. Genome Research 12, 1574–1581 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasim, S., Deris, S., Othman, R.M. (2010). A New Computational Framework for Gene Expression Clustering. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17316-5_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17315-8

  • Online ISBN: 978-3-642-17316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics