[go: up one dir, main page]

Skip to main content

A Calculus for Hybrid CSP

  • Conference paper
Programming Languages and Systems (APLAS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6461))

Included in the following conference series:

Abstract

Hybrid Communicating Sequential Processes (HCSP) is an extension of CSP allowing continuous dynamics. We are interested in applying HCSP to model and verify hybrid systems. This paper is to present a calculus for a subset of HCSP as a part of our efforts in modelling and verifying hybrid systems. The calculus consists of two parts. To deal with continuous dynamics, the calculus adopts differential invariants. A brief introduction to a complete algorithm for generating polynomial differential invariants is presented, which applies DISCOVERER, a symbolic computation tool for semi-algebraic systems. The other part of the calculus is a logic to reason about HCSP process, which involves communication, parallelism, real-time as well as continuous dynamics. This logic is named as Hybrid Hoare Logic. Its assertions consist of traditional pre- and post-conditions, and also Duration Calculus formulas to record execution history of HCSP process.

This work is supported in part by the projects NSFC-60721061, NSFC-90718041, NSFC-60736017, NSFC-60970031, NSFC-60634010 and RCS2008K001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K., de Boer, F., Olderog, E.-R.: Verfication of Sequential and Concurrent Programs. Springer, Heidelberg (2009) ISBN 978-1-184882-744-8

    Book  MATH  Google Scholar 

  2. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  3. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. : From CSP to hybrid systems. In: The proc. of A Classical Mind: Essays in Honour of C. A. R. Hoare. International Series In Computer Science, pp. 171–189. Prentice-Hall, Englewood Cliffs (1994), ISBN:0-13-294844-3

    Google Scholar 

  5. Liu, J., Zhan, N., Zhao, H.: A complete method for generating polynomial differential invariants. Technical Report of State Key Lab. of Comp. Sci., ISCAS-LCS-10-15 (2010)

    Google Scholar 

  6. Manna, Z., Pnueli, A.: Models of reactitivity. Acta Informatica 30(7), 609–678 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Olderog, R.-R., Dierks, H.: Real-Time Systems: Formal Secification and Automatic Verification. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  8. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. of Logic and Computation 20(1), 309–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Platzer, A.: Differential dynamic logic for hybrid systems. J. of Automated Reasoning 41, 143–189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. In: Software Demo at ISSAC 2007, Waterloo, July 30 (2007); Also: ACM SIGSAM Bulletin 41(3),102–103 (September 2007)

    Google Scholar 

  14. Yang, L.: Recent advances on determining the number of real roots of parametric polynomials. J. Symbolic Computation 28, 225–242 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials. Science in China (Ser. E) 39, 628–646 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Zhou, C., Wang, J., Ravn, A.: A formal description of hybrid systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, Springer, Heidelberg (1996)

    Google Scholar 

  17. Zhang, S.: The General Technical Solutions to Chinese Train Control System at Level 3 (CTCS-3). China Railway Publisher (2008)

    Google Scholar 

  18. Zhou, C., Hansen, M.: Duration Calculus: A Formal Approach to Real-Time Systems. Springer, Heidelberg (2004), ISBN 3-540-40823-1

    MATH  Google Scholar 

  19. Zhou, C., Hoare, C.A.R., Ravn, A.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J. et al. (2010). A Calculus for Hybrid CSP. In: Ueda, K. (eds) Programming Languages and Systems. APLAS 2010. Lecture Notes in Computer Science, vol 6461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17164-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17164-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17163-5

  • Online ISBN: 978-3-642-17164-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics