Abstract
While fuzzy logic controllers (FLCs) are developed to exploit human expert knowledge in designing control systems, the actual establishment of fuzzy rules and tuning of fuzzy membership functions are usually a time consuming exercise. In this paper a technique, based on the particle swarm optimisation (PSO), is employed to automatically tune the fuzzy rules of a Mamdani-type of fuzzy controller. The effectiveness of the designed controller is demonstrated by the control performance of such an FLC to a nonlinear water tank system with process time delay. The results are compared favourably to a PSO tuned PID controller.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lin, C.T., Lee, C.S.G.: Neural fuzzy systems. Prentice Hall, Inc., Upper Saddle River (1996)
Fang, G., Kwok, N.M., Ha, Q.P.: Automatic Fuzzy Membership Function Tuning Using the Particle Swarm Optimisation. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA 2008), Wuhan, China, vol. 2, pp. 324–328 (December 2008)
Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)
Shoorehdeli, M.A., Teshnehlab, M., Sedigh, A.K.: Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets and Systems (160), 922–948 (2009)
Pratihar, D.K., Deb, K., Ghosh, A.: A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning 20(2), 145–172 (1999)
Mucientes, M., Moreno, D.L., Bugarin, A., Barro, S.: Design of a fuzzy controller in mobile robotics using genetic algorithms. Applied Soft Computing 7, 540–546 (2007)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Kwok, N.M., Ha, Q.P., Liu, D.K., Fang, G.: Contrast enhancement and intensity preservation for gray-level images using multiobjective particle swarm optimization. IEEE Trans. Automation Science and Engineering 6(1), 145–155 (2009)
Kwok, N.M., Ha, Q.P., Nguyen, T.H., Li, J., Samali, B.: A novel hysteretic model for magneto rheological fluid dampers and parameter identification using particle swarm optimization. Sensors & Actuators: A. Physical 132(2), 441–451 (2006)
Karakuzu, C.: Fuzzy controller training using particle swarm optimisation for nonlinear system control. ISA Transactions 47, 229–239 (2008)
Niu, B., Zhu, Y., He, X., Shen, H.: A multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing. Neurocomputing 71, 1436–1448 (2008)
Mukherjee, V., Ghoshal, S.P.: Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research 77, 1689–1698 (2007)
Lin, C., Hong, S.: The design of neuro-fuzzy networks using particle swarm optimisation and recursive singular value decomposition. Neurocomputing 71, 271–310 (2007)
Esmin, A.A.A., Lambert-Torres, G.: Fitting fuzzy membership functions using hybrid particle swarm optimization. In: Proceedings on 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, pp. 2112–2119 (2006)
Ali, S.F., Ramaswamy, A.: Optimal fuzzy logic controller for MDOF structural systems using evolutionary algorithms. Engineering Applications of Artificial Intelligence (22), 407–419 (2009)
Rao, A.R.M., Sivasubramanian, K.: Multi-objective optimal design of fuzzy logic controller using a self configurable swarm intelligence algorithm. Computers and Structures (86), 2141–2154 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, G., Kwok, N.M., Wang, D. (2010). Automatic Rule Tuning of a Fuzzy Logic Controller Using Particle Swarm Optimisation. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2010. Lecture Notes in Computer Science(), vol 6320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16527-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-16527-6_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16526-9
Online ISBN: 978-3-642-16527-6
eBook Packages: Computer ScienceComputer Science (R0)