Abstract
A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. The goal of the paper is to present the way to predict temperature of melted steel in the electric arc furnace and consequently, to reduce the number of temperature measurements during the process. Reducing the number of temperature measurements shortens the time of the whole process and allows increasing production.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wieczorek, T., Blachnik, M., Mączka, K.: Modelowanie procesu roztapiania złomu w piecu łukowym z wykorzystaniem sieci neuronowych i algorytmów SVM. In: Grosman, F., Hyrcza-Michalska, M. (eds.) Informatyka w technologii metali, pp. 161–168. Wydawnictwo Naukowe Akapit, Kraków (2008)
Wieczorek, T., Mązka, K.: Modeling of the AC-EAF process using computational intelligence methods. Electrotechnical Review 11, 184–188 (2008)
Wieczorek, T., Blachnik, M., Ma̧czka, K.: Building a model for time reduction of steel scrap meltdown in the electric arc furnace (EAF): General strategy with a comparison of feature selection methods. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)
Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Archives of Metallurgy and Materials 53(2), 613–618 (2008)
Millman, M.S., Nyssen, P., Mathy, C., Tolazzi, D., Londero, L., Candusso, C., Baumert, J.C., Brimmeyer, M., Gualtieri, D., Rigoni, D.: Direct observation of the melting process in an eaf with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)
Kendall, M., Thys, M., Horrex, A., Verhoeven, J.P.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)
Schölkopf, B., Smola, A.: Learning with Kernels. In: Support Vector Machines, Regulari-zation, Optimization, and Beyond. MIT Press, Cambridge (2001)
Gerling, R., Louis, T., Schmeiduch, G., Sesselmann, R., Sieber, A.: Optimizing the melting process at AC-EAF with neural networks. Metall. Jg. 53(7-8), 410–418 (1999)
Pappe, T., Obradovic, D., Schlang, M.: Neural networks: reducing energy and raw materials requirements. Simens Review, 24–27 (Fall 1995)
Baumert, J.-C., Engel, R., Weiler, C.: Dynamic modeling of the electric arc furnace process using artificial neural networks. In: La Revue de Metallurgie-CIT, vol. 10, pp. 839–849 (2002)
Boulet, B., Lalli, G., Ajersch, M.: Modeling and control of an electric arc furnace. In: Proc. of the American Control Conf., Denver, Colorado, pp. 3060–3064. IEEE Press, Los Alamitos (2003)
Gao, X., Li, S., Chai, T., Shao, C., Wang, X.: Set point intelligent optimal control of electric arc furnace. In: Proc. of 2nd Asian Control Conf., Seul, pp. 763–766 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blachnik, M., Mączka, K., Wieczorek, T. (2010). A Model for Temperature Prediction of Melted Steel in the Electric Arc Furnace (EAF). In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-13232-2_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13231-5
Online ISBN: 978-3-642-13232-2
eBook Packages: Computer ScienceComputer Science (R0)