[go: up one dir, main page]

Skip to main content

OCRdroid: A Framework to Digitize Text Using Mobile Phones

  • Conference paper
Mobile Computing, Applications, and Services (MobiCASE 2009)

Abstract

As demand grows for mobile phone applications, research in optical character recognition, a technology well developed for scanned documents, is shifting focus to the recognition of text embedded in digital photographs. In this paper, we present OCRdroid, a generic framework for developing OCR-based applications on mobile phones. OCRdroid combines a light-weight image preprocessing suite installed inside the mobile phone and an OCR engine connected to a backend server. We demonstrate the power and functionality of this framework by implementing two applications called PocketPal and PocketReader based on OCRdroid on HTC Android G1 mobile phone. Initial evaluations of these pilot experiments demonstrate the potential of using OCRdroid framework for real-world OCR-based mobile applications.

This work was supported in part by NSF grant CCR-0120778 (CENS: Center for Embedded Networked Sensing), and by a gift from the Okawa Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ABBYY Mobile OCR Engine, http://www.abbyy.com/mobileocr/

  2. GOCR - A Free Optical Character Recognition Program, http://jocr.sourceforge.net/

  3. OCR resources (OCRopus), http://sites.google.com/site/ocropus/ocr-resources

  4. OCRAD - The GNU OCR, http://www.gnu.org/software/ocrad/

  5. OCRdroid, http://www-scf.usc.edu/~ananddjo/ocrdroid/index.php

  6. Simple OCR - Optical Character Recognition, http://www.simpleocr.com/

  7. Tesseract OCR Engine, http://code.google.com/p/tesseract-ocr/

  8. Visual Codes, http://www.vs.inf.ethz.ch/res/show.html?what=visualcodes

  9. WINTONE Mobile OCR Engine, http://www.wintone.com.cn/en/prod/44/detail270.aspx

  10. Bieniecki, W., Grabowski, S., Rozenberg, W.: Image preprocessing for improving ocr accuracy. In: Perspective Technologies and Methods in MEMS Design, MEMSTECH 2007 (2007)

    Google Scholar 

  11. Bruns, E., Bimber, O.: Adaptive training of video sets for image recognition on mobile phones (2009)

    Google Scholar 

  12. Chen, X., Yang, J., Zhang, J., Waibel, A.: Automatic detection and recognition of signs from natural scenes (2004)

    Google Scholar 

  13. Elmore, M., Martonosi, M.: A morphological image preprocessing suite for ocr on natural scene images (2008)

    Google Scholar 

  14. Liang, J., Doermann, D., Li, H.P.: Camera-based analysis of text and documents: a survey. International Journal on Document Analysis and Recognition 7(2-3), 84–104 (2005)

    Article  Google Scholar 

  15. Luo, X.P., Li, J., Zhen, L.X.: Design and implementation of a card reader based on build-in camera. In: ICPR 2004: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR 2004), vol. 1, pp. I: 417–420. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  16. Mistry, P., Maes, P.: Quickies: Intelligent sticky notes. In: International Conference on Intelligent Environments (2008)

    Google Scholar 

  17. Niblack, W.: An Introduction to Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  18. Ohbuchi, E., Hanaizumi, H., Hock, L.A.: Barcode readers using the camera device in mobile phones. In: CW 2004: Proceedings of the 2004 International Conference on Cyberworlds, pp. 260–265. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  20. Rice, S.V., Jenkins, F.R., Nartker, T.A.: OCR accuracy: UNLV’s fifth annual test. INFORM, 10, xx–yy (1996)

    Google Scholar 

  21. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognition 33(2), 225–236 (2000)

    Article  Google Scholar 

  22. Seeger, M., Dance, C.: Binarising camera images for OCR. In: Sixth International Conference on Document Analysis and Recognition (ICDAR 2001), pp. 54–58 (2001)

    Google Scholar 

  23. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  24. Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Document Recognition and Retrieval XV, vol. 6815, 681510 (2008)

    Google Scholar 

  25. Ulges, A., Lampert, C.H., Breuel, T.M.: Document image dewarping using robust estimation of curled text lines. In: Eighth International Conference on Document Analysis and Recognition, pp. II: 1001–1005 (2005)

    Google Scholar 

  26. Whitesell, K., Kutler, B., Ramanathan, N., Estrin, D.: A system determining indoor air quality from images air sensor captured cell phones (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Zhang, M., Joshi, A., Kadmawala, R., Dantu, K., Poduri, S., Sukhatme, G.S. (2010). OCRdroid: A Framework to Digitize Text Using Mobile Phones. In: Phan, T., Montanari, R., Zerfos, P. (eds) Mobile Computing, Applications, and Services. MobiCASE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12607-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12607-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12606-2

  • Online ISBN: 978-3-642-12607-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics