Abstract
Fuzzy linear regression is an important tool to find the linear inexact relationship between uncertain data. We then propose a hybrid optimization method based on tabu search and harmony search as a potential way of solving fuzzy linear regression. The proposed method aims at finding a model without considering any mathematical constraints while reducing the error of the regression’s model in comparison to other methods. The experimental comparison of the results for two classes of crisp input-fuzzy output and fuzzy input-fuzzy output data sets shows the superiority of the method over the existing ones.
This work has been supported in part under Australian Research Councils Linkage Projects Funding Scheme (project number LP0561985) and Macquarie University’s International Travel Grant Scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arabpour, A.R., Tata, M.: Estimating the parameters of a fuzzy linear regression model. Iranian Journal of Fuzzy Systems 5(2), 1–19 (2008)
Buckley, J.J., Feuring, T.: Linear and non-linear fuzzy regression: evolutionary algorithm solutions. Fuzzy Sets and Systems 112(3), 381–394 (2000)
Chan, K.Y., Kwong, C.K., Tsim, Y.C.: A genetic programming based fuzzy regression approach to modelling manufacturing processes. International Journal of Production Research, 1–16 (2009)
Chang, Y.-H.O., Ayyub, B.M.: Fuzzy regression methods - a comparative assessment. Fuzzy Sets and Systems 119(2), 187–203 (2001)
Chelouah, R., Siarry, P.: Genetic and nelder-mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. European Journal of Operational Research 148(2), 335–348 (2003)
Diamond, P.: Least squares fitting of several fuzzy variables. In: Bezdek, J.C. (ed.) Analysis of Fuzzy Information, pp. 329–331. CRC Press, Tokyo (1987)
Hassanpour, H.: A Goal Programming Approach to Fuzzy Linear Regression. PhD thesis, Shahid Bahonar University of Kerman (2008)
Hedar, A.-R.: Studies on Metaheuristics for Continuous Global Optimization Problems. PhD thesis, Kyoto University (2004)
Kao, C., Chyu, C.-L.: A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems 126(3), 401–409 (2002)
Kao, C., Chyu, C.-L.: Least-squares estimates in fuzzy regression analysis. European Journal of Operational Research 148(2), 426–435 (2003)
Kim, B., Bishu, R.R.: Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems 100(1-3), 343–352 (1998)
Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194(36–38), 3902–3933 (2005)
Lu, J., Wang, R.: An enhanced fuzzy linear regression model with more flexible spreads. Fuzzy Sets and Systems (to appear)
Mashinchi, M.H., Mashinchi, M.R., Mashinchi, M.: A two-phased genetic algorithm approach for linear and quadratic fuzzy regression. Set-valued Mathematics and Applications 1(2), 183–190 (2008)
Mashinchi, M.R., Selamat, A.: An improvement on genetic-based learning method for fuzzy artificial neural networks. Applied Soft Computing 9(4), 1208–1216 (2009)
Meittinen, K., Makela, M.M., Maaranen, H.: Efficient hybrid methods for global continuous optimization based on simulated annealing. Computers and Operations Research 33(4), 1102–1116 (2006)
Näther, W.: Regression with fuzzy random data. Computational Statistics & Data Analysis 51(1), 235–252 (2006)
Sakawa, M., Yano, H.: Fuzzy linear regression and its applications. Fuzzy Regression Analysis, pp. 61–80. Physica-Verlag, Heidelberg (1992)
Sánchez, J.A., Gómez, A.T.: Applications of fuzzy regression in actuarial analysis. Journal of Risk Insurance 70, 665–669 (2003)
Shakouri, H., Nadimia, R.: A novel fuzzy linear regression model based on a non-equality possibility index and optimum uncertainty. Applied Soft Computing 9(2), 590–598 (2009)
Talbi, E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
Tanaka, H., Uejima, S., Asal, A.: Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics 12, 903–907 (1982)
Xue, Y., Kim, I.S., Son, J.S., Park, C.E., Kim, H.H., Sung, B.S., Kim, I.J., Kim, H.J., Kang, B.Y.: Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process. Journal of Materials Processing Technology 164-165, 1134–1139 (2005)
Yang, M.-S., Ko, C.-H.: On cluster-wise fuzzy regression analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B 27(1), 1–13 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mashinchi, M.H., Orgun, M.A., Mashinchi, M. (2009). Solving Fuzzy Linear Regression with Hybrid Optimization. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-10684-2_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10682-8
Online ISBN: 978-3-642-10684-2
eBook Packages: Computer ScienceComputer Science (R0)