[go: up one dir, main page]

Skip to main content

Hybrid Interval Type-1 Non-singleton Type-2 Fuzzy Logic Systems Are Type-2 Adaptive Neuro-fuzzy Inference Systems

  • Chapter
Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 257))

  • 871 Accesses

Abstract

This article presents a new learning methodology based on a hybrid algorithm for interval type-1 non-singleton type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by the recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the back-propagation (BP) method. The proposed hybrid methodology was used to construct an interval type-1 non-singleton type-2 TSK fuzzy model capable of approximating the behavior of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone. Comparative results show the performance of the hybrid learning method (RLS-BP) against the only BP learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mendel, J.M.: Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  2. Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Hot Strip Mill Temperature Prediction Using Hybrid Learning Interval Singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Modeling and Simulation, Palm Springs, February 2003, pp. 380–385 (2003)

    Google Scholar 

  3. Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Modeling of a Hot Strip Mill Temperature Using Hybrid Learning for Interval Type-1 and Type-2 Non-Singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmádena, Spain, September 2003, pp. 529–533 (2003)

    Google Scholar 

  4. Mendez, G., Juarez, I.: Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval Type-1 Non-Singleton Type-2 Fuzzy Logic Systems. WSEAS Transactions on Systems 4(3) (March 2005), ISSN 1109-2777

    Google Scholar 

  5. Mendez, G., Castillo, O.: Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm. In: FUZZ-IEEE 2005 The international Conference on Fuzzy Systems, Reno Nevada, USA, pp. 230–235 (2005)

    Google Scholar 

  6. Lee, D.Y., Cho, H.S.: Neural Network Approach to the Control of the Plate Width in Hot Plate Mills. In: International Joint Conference on Neural Networks, vol. 5, pp. 3391–3396 (1999)

    Google Scholar 

  7. Taylor, B.N., Kuyatt, C.E.: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297 (September 1994)

    Google Scholar 

  8. Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, pp. 1163–1170 (1992)

    Google Scholar 

  9. Wang, L.-X., Mendel, J.M.: Back-Propagation Fuzzy Systems as Nonlinear Dynamic System Identifiers. In: Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, CA, March 1992, pp. 1409–1418 (1992)

    Google Scholar 

  10. Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. on Fuzzy Systems, San Diego, pp. 1163–1170 (1992)

    Google Scholar 

  11. Wang, L.-X.: A Course in Fuzzy Systems and Control. Prentice Hall PTR, Upper Saddle River (1997)

    MATH  Google Scholar 

  12. Liang, Q.J., Mendel, J.M.: Interval type-2 fuzzy logic systems: Theory and design. Trans. Fuzzy Sistems. 8, 535–550 (2000)

    Article  Google Scholar 

  13. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  14. Jang, J.-S.R., Sun, C.-T.: Neuro-Fuzzy Modeling and Control. The Proceedings of the IEEE 3, 378–406 (1995)

    Article  Google Scholar 

  15. GE Models, Users reference, Roanoke VA, vol. 1 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendez, G.M., De Los Angeles Hernandez, M. (2009). Hybrid Interval Type-1 Non-singleton Type-2 Fuzzy Logic Systems Are Type-2 Adaptive Neuro-fuzzy Inference Systems. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. Studies in Computational Intelligence, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04514-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04514-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04513-4

  • Online ISBN: 978-3-642-04514-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics