Abstract
Emerging patterns are patterns of a great interest for characterizing classes. This task remains a challenge, especially with graph data. In this paper, we propose a method to mine the whole set of frequent emerging graph patterns, given a frequency threshold and an emergence threshold. Our results are achieved thanks to a change of the description of the initial problem so that we are able to design a process combining efficient algorithmic and data mining methods. Experiments on a real-world database composed of chemicals show the feasibility and the efficiency of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borgelt, C., Berthold, M.R.: Mining molecular fragments: Finding relevant substructures of molecules. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2002), pp. 51–58 (2002)
Borgelt, C., Meinl, T., Berthold, M.: Moss: a program for molecular substructure mining. In: Workshop Open Source Data Mining Software, pp. 6–15. ACM Press, New York (2005)
Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons, Chichester (2006)
De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application to molecular fragment finding. In: IJCAI 2001, pp. 853–862 (2001)
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 1999), pp. 43–52. ACM Press, New York (1999)
EPAFHM. Mid continent ecology division (environement protection agency), fathead minnow, http://www.epa.gov/med/Prods_Pubs/fathead_minnow.htm
Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Company, New York (1979)
Kramer, S., Raedt, L.D., Helma, C.: Molecular feature mining in HIV data. In: KDD, pp. 136–143 (2001)
Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowledge and Information Systems 3(2), 131–145 (2001)
Li, J., Wong, L.: Emerging patterns and gene expression data. Genome Informatics 12, 3–13 (2001)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD 1998, pp. 13–24. ACM Press, New York (1998)
Soulet, A., Crémilleux, B.: Mining constraint-based patterns using automatic relaxation. Intelligent Data Analysis 13(1), 1–25 (2009)
Soulet, A., Kléma, J., Crémilleux, B.: Efficient Mining under Rich Constraints Derived from Various Datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 223–239. Springer, Heidelberg (2007)
Ting, R.M.H., Bailey, J.: Mining minimal contrast subgraph patterns. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM, pp. 638–642. SIAM, Philadelphia (2006)
Ullman, J.: An algorithm for subgraph isomorphism. Journal of the ACM 23, 31–42 (1976)
Veith, G., Greenwood, B., Hunter, R., Niemi, G., Regal, R.: On the intrinsic dimensionality of chemical structure space. Chemosphere 17(8), 1617–1644 (1988)
Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A quantitative comparison of the subgraph miners mofa, gspan, FFSM, and gaston. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 392–403. Springer, Heidelberg (2005)
Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM. LNCS, vol. 2394, pp. 721–724. IEEE Computer Society Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Poezevara, G., Cuissart, B., Crémilleux, B. (2009). Discovering Emerging Graph Patterns from Chemicals. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-04125-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04124-2
Online ISBN: 978-3-642-04125-9
eBook Packages: Computer ScienceComputer Science (R0)