[go: up one dir, main page]

Skip to main content

Discovering Emerging Graph Patterns from Chemicals

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5722))

Included in the following conference series:

Abstract

Emerging patterns are patterns of a great interest for characterizing classes. This task remains a challenge, especially with graph data. In this paper, we propose a method to mine the whole set of frequent emerging graph patterns, given a frequency threshold and an emergence threshold. Our results are achieved thanks to a change of the description of the initial problem so that we are able to design a process combining efficient algorithmic and data mining methods. Experiments on a real-world database composed of chemicals show the feasibility and the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borgelt, C., Berthold, M.R.: Mining molecular fragments: Finding relevant substructures of molecules. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2002), pp. 51–58 (2002)

    Google Scholar 

  2. Borgelt, C., Meinl, T., Berthold, M.: Moss: a program for molecular substructure mining. In: Workshop Open Source Data Mining Software, pp. 6–15. ACM Press, New York (2005)

    Google Scholar 

  3. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons, Chichester (2006)

    Book  MATH  Google Scholar 

  4. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application to molecular fragment finding. In: IJCAI 2001, pp. 853–862 (2001)

    Google Scholar 

  5. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 1999), pp. 43–52. ACM Press, New York (1999)

    Chapter  Google Scholar 

  6. EPAFHM. Mid continent ecology division (environement protection agency), fathead minnow, http://www.epa.gov/med/Prods_Pubs/fathead_minnow.htm

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  8. Kramer, S., Raedt, L.D., Helma, C.: Molecular feature mining in HIV data. In: KDD, pp. 136–143 (2001)

    Google Scholar 

  9. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowledge and Information Systems 3(2), 131–145 (2001)

    Article  MATH  Google Scholar 

  10. Li, J., Wong, L.: Emerging patterns and gene expression data. Genome Informatics 12, 3–13 (2001)

    Google Scholar 

  11. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  12. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD 1998, pp. 13–24. ACM Press, New York (1998)

    Chapter  Google Scholar 

  13. Soulet, A., Crémilleux, B.: Mining constraint-based patterns using automatic relaxation. Intelligent Data Analysis 13(1), 1–25 (2009)

    Google Scholar 

  14. Soulet, A., Kléma, J., Crémilleux, B.: Efficient Mining under Rich Constraints Derived from Various Datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 223–239. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Ting, R.M.H., Bailey, J.: Mining minimal contrast subgraph patterns. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM, pp. 638–642. SIAM, Philadelphia (2006)

    Google Scholar 

  16. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the ACM 23, 31–42 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Veith, G., Greenwood, B., Hunter, R., Niemi, G., Regal, R.: On the intrinsic dimensionality of chemical structure space. Chemosphere 17(8), 1617–1644 (1988)

    Article  Google Scholar 

  18. Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A quantitative comparison of the subgraph miners mofa, gspan, FFSM, and gaston. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 392–403. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM. LNCS, vol. 2394, pp. 721–724. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poezevara, G., Cuissart, B., Crémilleux, B. (2009). Discovering Emerging Graph Patterns from Chemicals. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics