[go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5601))

  • 897 Accesses

Abstract

Genetic algorithms (GA) represent an algorithmic optimization technique inspired by biological evolution. A major strength of this meta-heuristic is its ability to explore the search space in independent parallel search routes rendering the algorithm highly efficient if implemented on a parallel architecture. Sequential simulations of GAs frequently result in enormous computational costs. To alleviate this problem, we propose a serial evolution strategy which results in a much smaller number of necessary fitness function evaluations thereby speeding up the computation considerably. If implemented on a parallel architecture the savings in computational costs are even more pronounced. We present the algorithm in full mathematical detail and proof the corresponding schema theorem for a simple case without cross-over operations. A toy example illustrates the operation of serial evolution and the performance improvement over a canonical genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Computer simulations of genetic adaptation: Parallel subcomponent interaction in a multilocus model. Technical report, PhD thesis, University of Michigan (1985)

    Google Scholar 

  2. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. 2nd Int. Conf. Genetic Algorithms, pp. 14–21 (1987)

    Google Scholar 

  3. Barricelli, N.A.: Esempi numerici di processi di evoluzione. Methodos, 45–68 (1954)

    Google Scholar 

  4. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms. In: Genetic Algorithms and Evolutionary Computation, vol. 1. Kluwer Academic Publishers Group, Norwell (2000)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston (1989)

    MATH  Google Scholar 

  6. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. In: Genetic Algorithms and Evolutionary Computation, vol. 7. Kluwer Academic Publishers Group, Norwell (2002)

    Google Scholar 

  7. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)

    Google Scholar 

  8. Tomé, A.M., Puntonet, C.G., Górriz, J.M., Stadlthanner, K., Theis, F.J., Lang, E.W.: Hybridizing sparse component analysis with genetic algorithms for microarray analysis. Neurocomputing 71, 2356–2376 (2008)

    Article  Google Scholar 

  9. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart (1973)

    Google Scholar 

  10. Whitely, D.: A genetic algorithm tutorial. Technical report, Colorado State University (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, V., Tomé, A.M., Lang, E.W. (2009). Serial Evolution. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics