Abstract
Genetic algorithms (GA) represent an algorithmic optimization technique inspired by biological evolution. A major strength of this meta-heuristic is its ability to explore the search space in independent parallel search routes rendering the algorithm highly efficient if implemented on a parallel architecture. Sequential simulations of GAs frequently result in enormous computational costs. To alleviate this problem, we propose a serial evolution strategy which results in a much smaller number of necessary fitness function evaluations thereby speeding up the computation considerably. If implemented on a parallel architecture the savings in computational costs are even more pronounced. We present the algorithm in full mathematical detail and proof the corresponding schema theorem for a simple case without cross-over operations. A toy example illustrates the operation of serial evolution and the performance improvement over a canonical genetic algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Computer simulations of genetic adaptation: Parallel subcomponent interaction in a multilocus model. Technical report, PhD thesis, University of Michigan (1985)
Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. 2nd Int. Conf. Genetic Algorithms, pp. 14–21 (1987)
Barricelli, N.A.: Esempi numerici di processi di evoluzione. Methodos, 45–68 (1954)
Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms. In: Genetic Algorithms and Evolutionary Computation, vol. 1. Kluwer Academic Publishers Group, Norwell (2000)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston (1989)
Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. In: Genetic Algorithms and Evolutionary Computation, vol. 7. Kluwer Academic Publishers Group, Norwell (2002)
Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
Tomé, A.M., Puntonet, C.G., Górriz, J.M., Stadlthanner, K., Theis, F.J., Lang, E.W.: Hybridizing sparse component analysis with genetic algorithms for microarray analysis. Neurocomputing 71, 2356–2376 (2008)
Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart (1973)
Whitely, D.: A genetic algorithm tutorial. Technical report, Colorado State University (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischer, V., Tomé, A.M., Lang, E.W. (2009). Serial Evolution. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02264-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02263-0
Online ISBN: 978-3-642-02264-7
eBook Packages: Computer ScienceComputer Science (R0)